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Section 1

Beyond the Gaussian distribution
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Quick recap about Gaussian distribution

• The Gaussian distribution is part of the Exponential family
• It is defined with mean (𝜇) and the standard deviation (𝜎) that are

independent
• It is symmetric with the same value for mean, mode and median
• The support is [−∞, +∞]

The Probability Density Function (PDF) is:
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Quick recap about Gaussian distribution
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Quick recap about Gaussian distribution

In fact, in Psychology, variables do not always satisfy the properties of the
Gaussian distribution. For example:

• Reaction times
• Accuracy
• Percentages or proportions
• Discrete counts
• Likert scales
• …
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Reaction times
Measuring reaction times during a cognitive task. Non-negative and
probably skewed data.
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Binary outcomes
Counting the number of people passing the exam out of the total.
Discrete and non-negative. A series of binary (i.e., bernoulli) experiments.
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Counts
Counting the number of new hospitalized patients during one month in
different cities. Discrete and non-negative values.
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Question…

Should we use a linear model for
these variables?
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Should we use a linear model for these variables?

Let’s try to fit a linear model on the probability of passing the exam
(𝑁 = 50) as a function of the hours of study:

student study.hours passing

1 82 1
2 19 0
3 96 1
4 81 1
... ... ...

47 4 0
48 22 0
49 62 1
50 16 0

n npassing nfailing ppassing

50 21 29 0.42
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Should we use a linear model for these variables?
Let’s plot the data:
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Should we use a linear model for these variables?
Let’s fit a linear model passing ~ study_hours using lm:
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Should we use a linear model for these variables?
A little spoiler, the relationship should be probably like this:
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Should we use a linear model for these variables?

Another example, the number of solved exercises in a semester as a
function of the number of attended lectures (𝑁 = 100):

student attended.lectures nsolved

1 49 9
2 16 0
3 58 23
4 32 6
... ... ...

97 2 0
98 57 20
99 49 8
100 55 12
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Should we use a linear model for these variables?
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Should we use a linear model for these variables?
Again, fitting the linear model seems partially appropriate but there are
some problems:
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Should we use a linear model for these variables?
Also the residuals are quite problematic:
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Should we use a linear model for these variables?
Another little spoiler, the model should consider both the support of the y
variable and the non-linear pattern. Probably something like this:
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So what?

Both linear models somehow capture the expected relationship but there
are serious fitting problems:

• impossible predictions
• poor fitting for non-linear patterns

As a general rule in life statistics:

All models are wrong, some are useful.
— George Box
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We need a new class of models…

• We need that our model take into account the features of our
response variable

• We need a model that, with appropriate transformation, keep
properties of standard linear models

• We need a model that is closer to the true data generation
process

Let’s switch to Generalized Linear Models!
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Section 2

Generalized Linear Models
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Main references
For a detailed introduction about GLMs

• Chapters: 1 (intro), 4 (GLM fitting), 5 (GLM for binary data)
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Main references
For a basic and well written introduction about GLM, especially the
Binomial GLM

• Chapters: 3 (intro GLMs), 4-5 (Binomial Logistic Regression)
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Main references
Great resource for interpreting Binomial GLM parameters:

• Chapters: 13-14 (Binomial Logistic GLM), 15 (Poisson and others
GLMs)
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Main references
Detailed GLMs book. Very useful especially for the diagnostic part:

• Chapters: 8 (intro), 9 (Binomial GLM), 10 (Poisson GLM and
overdispersion)
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Main references
The holy book :)

• Chapters: 14 and 15
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Main references
Another good reference…

• Chapters: 8
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General idea

• models that assume distributions other than the normal
distributions

• models that considers non-linear relationships
• models that allow heteroscedasticity
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Recipe for a GLM

• Random Component
• Systematic Component
• Link Function

30 / 47



Random Component
The random component of a GLM identify the response variable 𝑌 and
the appropriate probability distribution. For example for a numerical and
continuous variable we could use a Normal distribution (i.e., a standard
linear model). For a discrete variable representing counts of events we
could use a Poisson distribution, etc.
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Systematic Component

The systematic component or linear predictor (𝜂) of a GLM is the
combination of explanatory variables i.e. 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑝𝑥𝑝.

𝜂 = 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑝𝑥𝑝

When the link function (see next slide) is used, the relationship between
𝜂 and the expected value 𝜇 of the random component is linear (as in
standard linear models)
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Link Function

The link function 𝑔(𝜇) is an invertible function that connects the
expected value (i.e., the mean 𝜇) of the probability distribution (i.e., the
random component) with the linear combination of predictors
𝑔(𝜇) = 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑝𝑥𝑝. The inverse of the link function 𝑔−1 map
the linear predictor (𝜂) into the original scale.

𝑔(𝜇) = 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑝𝑥𝑝
𝜇 = 𝑔−1(𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑝𝑥𝑝)

Thus, the relationship between 𝜇 and 𝜂 is linear only when the link
function is applied i.e. 𝑔(𝜇) = 𝜂.
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Link function

The simplest link function is the identity link where 𝑔(𝜇) = 𝜇 and
correspond to the standard linear model. In fact, the linear regression is
just a GLM with a Gaussian random component and the identity link
function.
There are multiple random components and link functions for example
with a 0/1 binary variable the usual choice is using a Binomial random
component and the logit link function.

Family Link Range

gaussian identity (−∞, +∞)
binomial logit 0,1,...,𝑛𝑖

𝑛𝑖
probit 0,1,...,𝑛𝑖

𝑛𝑖
poisson log 0, 1, 2, ...
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Section 3

Relevant distributions
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Binomial distribution

The probability of having 𝑘 success (e.g., 0, 1, 2, etc.) out of 𝑛 trials with
a probability of success 𝑝 is:

𝑓(𝑛, 𝑘, 𝑝) = 𝑃𝑟(𝑋 = 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

The 𝑛𝑝 is the mean of the binomial distribution and 𝑛𝑝(1 − 𝑝) is the
variance.
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Bernoulli distribution

The binomial distribution is just a repetition of 𝑘 Bernoulli trials. A
single Bernoulli trial is:

𝑓(𝑥, 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥

𝑥 ∈ {0, 1}

The mean is 𝑝 and the variance is 𝑝(1 − 𝑝)
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Bernoulli and Binomial

The simplest situation for a Bernoulli trial is a coin flip. In R:

n <- 1
p <- 0.7
rbinom(1, n, p) # a single bernoulli trial

## [1] 0

n <- 10
rbinom(10, 1, p) # n bernoulli trials

## [1] 1 1 0 1 1 1 0 1 1 0

rbinom(1, n, p) # binomial version

## [1] 7
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Bernoulli and Binomial

The Bernoulli and the Binomial distributions are used as random
components when we have the dependent variable assuming 2 values
(e.g., correct and incorrect) and we have the total number of trials:

• Accuracy on a cognitive task
• Patients recovered or not after a treatment
• People passing or not an exam
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Poisson distribution

The number of events 𝑘 during a fixed time interval (e.g., number of new
user on a website in 1 week) is:

𝑓(𝑘, 𝜆) = 𝑃𝑟(𝑋 = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘!

Where 𝑘 is the number of occurrences (𝑘 = 0, 1, 2, ...), 𝑒 is Euler’s
number (𝑒 = 2.71828...) and ! is the factorial function. The mean and the
variance of the Poisson distribution is 𝜆
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Poisson distribution
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Section 4

Data simulation #extra
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Data simulation #extra

• During the course we will try to simulate some data. Simulating data
is an amazing education tool to understand a statistical model.

• By simulating from a generative model we are doing a so-called
Monte Carlo Simulations [1]
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Data simulation #extra
In R there are multiple functions to generate data from probability
distributions:

Function Distribution Action

norm

pois
d

binom
Compute the density

norm

pois
p

binom
Return the cumulative probability given a quantile

norm

pois
q

binom
Return the quantile given a cumulative proability

norm

pois
r

binom
Generate random numbers
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Data simulation #extra

n <- 1e5 # number of experiments
nt <- 100 # number of subjects
p <- 0.7 # probability of success
nc <- rbinom(n, nt, p)
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n <- 1e5 # number of subjects
lambda <- 30 # mean/variance
y <- rpois(n, lambda)
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