Introduction to Generalized Linear Models

Filippo Gambarota

University of Padova

2022/2023

Updated on 2023-04-26

1. Beyond the Gaussian distribution

- 2. Generalized Linear Models
- 3. Relevant distributions

4. Data simulation #extra

Beyond the Gaussian distribution

Quick recap about Gaussian distribution

- The Gaussian distribution is part of the Exponential family
- It is defined with mean (μ) and the standard deviation (σ) that are independent
- It is symmetric with the same value for mean, mode and median
- The support is $[-\infty, +\infty]$

The Probability Density Function (PDF) is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Quick recap about Gaussian distribution

But not always gaussian-like variables!

In fact, in Psychology, variables do not always satisfy the properties of the Gaussian distribution. For example:

- Reaction times
- Accuracy
- Percentages or proportions
- Discrete counts
- Likert scales
- ...

Reaction times

Measuring **reaction times during a cognitive task**. Non-negative and probably skewed data.

Binary outcomes

Counting the number of people passing the exam out of the total. Discrete and non-negative. A series of binary (i.e., *bernoulli*) experiments.

Counts

Counting the number of new hospitalized patients during one month in different cities. Discrete and non-negative values.

Let's try to fit a linear model on the probability of passing the exam (N = 50) as a function of the hours of study:

student	study.hours	passing
1	82	1
2	19	0
3	96	1
4	81	1
47	4	0
48	22	0
49	62	1
50	16	0

n	npassing	nfailing	ppassing
50	21	29	0.42

Let's plot the data:

Let's fit a linear model passing ~ study_hours using lm:

Do you see something strange?

A little **spoiler**, the relationship should be probably like this:

Another example, the number of solved exercises in a semester as a function of the number of attended lectures (N = 100):

student	attended.lectures	nsolved
1	49	9
2	16	0
3	58	23
4	32	6
97	2	0
98	57	20
99	49	8
100	55	12

Again, fitting the linear model seems partially appropriate but there are some problems:

Also the residuals are quite problematic:

Another little spoiler, the model should consider both the support of the y variable and the non-linear pattern. Probably something like this:

Both linear models somehow capture the expected relationship but there are serious fitting problems:

- impossible predictions
- poor fitting for non-linear patterns

As a general rule in life statistics:

All models are wrong, some are useful.

— George Box

- We need that our model take into account the **features of our response variable**
- We need a model that, with appropriate transformation, keep properties of standard linear models
- We need a model that is closer to the true data generation process

Let's switch to Generalized Linear Models!

Generalized Linear Models

For a detailed introduction about GLMs

• Chapters: 1 (intro), 4 (GLM fitting), 5 (GLM for binary data)

For a basic and well written introduction about GLM, especially the Binomial $\ensuremath{\mathsf{GLM}}$

• Chapters: 3 (intro GLMs), 4-5 (Binomial Logistic Regression)

Wiley Series in Probability and Statistics
AN INTRODUCTION TO
CATEGORICAL
DATA ANALYSIS
THIRD EDITION
ALAN AGRESTI
WILEY

Great resource for interpreting Binomial GLM parameters:

• Chapters: 13-14 (Binomial Logistic GLM), 15 (Poisson and others GLMs)

Detailed GLMs book. Very useful especially for the diagnostic part:

• Chapters: 8 (intro), 9 (Binomial GLM), 10 (Poisson GLM and overdispersion)

The holy book :)

• Chapters: 14 and 15

Another good reference...

• Chapters: 8

- models that assume distributions other than the normal distributions
- models that considers **non-linear relationships**
- models that allow heteroscedasticity

- Random Component
- Systematic Component
- Link Function

Random Component

The **random component** of a GLM identify the response variable Y and the appropriate probability distribution. For example for a numerical and continuous variable we could use a Normal distribution (i.e., a standard linear model). For a discrete variable representing counts of events we could use a Poisson distribution, etc.

The systematic component or linear predictor (η) of a GLM is the combination of explanatory variables i.e. $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$.

$$\eta=\beta_0+\beta_1x_1+\ldots+\beta_px_p$$

When the **link function** (see next slide) is used, the relationship between η and the expected value μ of the **random component** is linear (as in standard linear models)

The link function $g(\mu)$ is an invertible function that connects the expected value (i.e., the mean μ) of the probability distribution (i.e., the random component) with the *linear combination* of predictors $g(\mu) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. The inverse of the link function g^{-1} map the linear predictor (η) into the original scale.

$$\begin{split} g(\mu) &= \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p \\ \mu &= g^{-1} (\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p) \end{split}$$

Thus, the relationship between μ and η is linear only when the **link** function is applied i.e. $g(\mu) = \eta$.

The simplest link function is the identity link where $g(\mu) = \mu$ and correspond to the standard linear model. In fact, the linear regression is just a GLM with a **Gaussian random component** and the identity link function.

There are multiple **random components** and **link functions** for example with a 0/1 binary variable the usual choice is using a **Binomial** random component and the **logit** link function.

Family	Link	Range
gaussian	identity	$(-\infty,+\infty)$
binomial	logit	$\frac{0,1,\ldots,n_i}{n_i}$
	probit	$\frac{0,1,\ldots,n_i}{n_i}$
poisson	log	$0, 1, 2, \ldots$

Relevant distributions

The probability of having k success (e.g., 0, 1, 2, etc.) out of n trials with a probability of success p is:

$$f(n,k,p)=Pr(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$

The np is the mean of the binomial distribution and np(1-p) is the variance.

The **binomial** distribution is just a repetition of k **Bernoulli** trials. A single Bernoulli trial is:

$$f(x,p) = p^x (1-p)^{1-x} \\ x \in \{0,1\}$$

The mean is p and the variance is p(1-p)

The simplest situation for a Bernoulli trial is a coin flip. In R:

[1] 7

The Bernoulli and the Binomial distributions are used as **random components** when we have the dependent variable assuming 2 values (e.g., *correct* and *incorrect*) and we have the total number of trials:

- Accuracy on a cognitive task
- Patients recovered or not after a treatment
- People passing or not an exam

The number of events k during a fixed time interval (e.g., number of new user on a website in 1 week) is:

$$f(k,\lambda) = Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Where k is the number of occurrences (k = 0, 1, 2, ...), e is Euler's number (e = 2.71828...) and ! is the factorial function. The mean and the variance of the Poisson distribution is λ

Poisson distribution

As λ increases, the distribution is well approximated by a Gaussian distribution, but the Poisson is discrete.

Data simulation #extra

- During the course we will try to simulate some data. Simulating data is an amazing education tool to understand a statistical model.
- By simulating from a **generative model** we are doing a so-called **Monte Carlo Simulations** [1]

Data simulation #extra

In R there are multiple functions to generate data from probability distributions:

Function	Distribution	Action	
	norm		
d .	pois	Compute the density	
	binom		
	norm		
р	pois	- - Return the cumulative probability given a quantile	
	binom		
	norm		
q	pois	- Return the quantile given a cumulative probality	
	binom	. Actum the quantile given a cumulative proability	
	norm		
r	pois	Generate random numbers	
	binom		

References

- J. E. Gentle, "Monte carlo methods for statistical inference," in *Computational statistics*, J. E. Gentle, Ed., New York, NY: Springer New York, 2009, pp. 417–433. doi: 10.1007/978-0-387-98144-4_11.
- [2] A. Gelman, J. Hill, and A. Vehtari, *Regression and other stories*. Cambridge University Press, 2020. doi: 10.1017/9781139161879.
- [3] J. J. Faraway, Extending the linear model with r: Generalized linear, mixed effects and nonparametric regression models, second edition. Chapman; Hall/CRC, 2016. doi: 10.1201/9781315382722.
- [4] P. K. Dunn and G. K. Smyth, Generalized linear models with examples in R. Springer, 2018.
- [5] A. Agresti, An introduction to categorical data analysis. John Wiley & Sons, 2018.
- [6] A. Agresti, Foundations of linear and generalized linear models. John Wiley & Sons, 2015.
- [7] J. Fox, Applied regression analysis and generalized linear models. SAGE Publications, 2015.

filippo.gambarota@unipd.it

O github.com/filippogambarota