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Section 1

Binomial GLM
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Example: Passing the exam

We want to measure the impact of watching tv-shows on the probability
of passing the statistics exam.

• exam: passing the exam (1 = “passed”, 0 = “failed”)
• tv_shows: watching tv-shows regularly (1 = “yes”, 0 = “no”)

head(dat)

## tv_shows exam
## 1 1 1
## 2 1 1
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0
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Example: Passing the exam

We can create the contingency table
xtabs(~exam + tv_shows, data = dat) |>

addmargins()

## tv_shows
## exam 0 1 Sum
## 0 33 24 57
## 1 17 26 43
## Sum 50 50 100
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Example: Passing the exam

Each cell probability 𝜋𝑖𝑗 is computed as 𝜋𝑖𝑗/𝑛
(xtabs(~exam + tv_shows, data = dat)/n) |>

addmargins()

## tv_shows
## exam 0 1 Sum
## 0 0.33 0.24 0.57
## 1 0.17 0.26 0.43
## Sum 0.50 0.50 1.00
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Example: Passing the exam - Odds

The most common way to analyze a 2x2 contingency table is using the
odds ratio (OR). Firsly let’s define the odds of success as:

𝑜𝑑𝑑𝑠 = 𝜋
1 − 𝜋

𝜋 = 𝑜𝑑𝑑𝑠
𝑜𝑑𝑑𝑠 + 1

• the odds are non-negative, ranging between 0 and +∞
• an odds of e.g. 3 means that we expect 3 success for each failure
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Example: Passing the exam - Odds

For the exam example:
odds <- function(p) p / (1 - p)
p11 <- mean(with(dat, exam[tv_shows == 1])) # passing exam | tv_shows
odds(p11)

## [1] 1.083333
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Example: Passing the exam - Odds Ratio

The OR is a ratio of odds:

𝑂𝑅 =
𝜋1

1−𝜋1
𝜋2

1−𝜋2

• OR ranges between 0 and +∞. When 𝑂𝑅 = 1 the odds for the two
conditions are equal

• An e.g. 𝑂𝑅 = 3 means that being in the condition at the numerator
increase 3 times the odds of success
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Example: Passing the exam - Odds Ratio

odds_ratio <- function(p1, p2) odds(p1) / odds(p2)
p11 <- mean(with(dat, exam[tv_shows == 1])) # passing exam | tv_shows
p10 <- mean(with(dat, exam[tv_shows == 0])) # passing exam | not tv_shows
odds_ratio(p11, p10)

## [1] 2.102941
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Why using these measure?
The odds have an interesting property when taking the logarithm. We can
express a probability 𝜋 using a scale ranging [−∞, +∞]
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Another example, Teddy Child

We considered a Study conducted by the University of Padua (TEDDY
Child Study, 2020)1. Within the study, researchers asked the participants
(mothers of a young child) about the presence of post-partum depression
and measured the parental stress using the PSI-Parenting Stress Index.

ID Parental.stress Depression.pp

1 75 No
2 51 No
3 76 No
4 88 No
... ... ...

376 67 No
377 71 No
378 63 No
379 70 No

1Thanks to Prof. Paolo Girardi for the example, see https://teddychild.dpss.psy.unipd.it/ for
information
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Another example, Teddy Child
We want to see if the parental stress increase the probability of having
post-partum depression:
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Another example, Teddy Child
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Another example, Teddy Child

Let’s start by fitting a linear model Depression_pp ~
Parental_stress. We consider “Yes” as 1 and “No” as 0.
fit_lm <- lm(Depression_pp01 ~ Parental_stress, data = teddy)
summary(fit_lm)

##
## Call:
## lm(formula = Depression_pp01 ~ Parental_stress, data = teddy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42473 -0.13768 -0.10003 -0.05768 0.94702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.172900 0.077561 -2.229 0.026389 *
## Parental_stress 0.004706 0.001201 3.919 0.000105 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3239 on 377 degrees of freedom
## Multiple R-squared: 0.03915, Adjusted R-squared: 0.0366
## F-statistic: 15.36 on 1 and 377 DF, p-value: 0.0001054
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Another example, Teddy Child
Let’s add the fitted line to our plot:
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Another example, Teddy Child
… and check the residuals, pretty bad right?
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Another example, Teddy Child

As for the exam example, we could compute a sort of contingency table
despite the Parental_stress is a numerical variable by creating some
discrete categories (just for exploratory analysis):

table(teddy$Depression_pp, teddy$Parental_stress_c) |>
round(2)

##
## < 40 40-60 60-80 80-100 > 100
## No 0 164 136 26 6
## Yes 0 15 21 7 4

table(teddy$Depression_pp, teddy$Parental_stress_c) |>
prop.table(margin = 2) |>
round(2)

##
## < 40 40-60 60-80 80-100 > 100
## No 0.92 0.87 0.79 0.60
## Yes 0.08 0.13 0.21 0.40
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Another example, Teddy Child
Ideally, we could compute the increase in the odds of having the
post-partum depression as the parental stress increase. In fact, as we are
going to see, the Binomial GLM is able to estimate the non-linear increase
in the probability.
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Binomial GLM

• The random component of a Binomial GLM the binomial
distribution with parameter 𝜋

• The systematic component is a linear combination of predictors and
coefficients 𝛽𝑋

• The link function is a function that map probabilities into the
[−∞, +∞] range.
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Binomial GLM - Logit Link

The logit link is the most common link function when using a binomial
GLM:

𝑙𝑜𝑔 ( 𝜋
1 − 𝜋) = 𝛽0 + 𝛽1𝑋1 + ...𝛽𝑝𝑋𝑝

The inverse of the logit maps again the probability into the [0, 1] range:

𝜋 = 𝑒𝛽0+𝛽1𝑋1+...𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+...𝛽𝑝𝑋𝑝
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Binomial GLM - Logit Link
Thus with a single numerical predictor 𝑥 the relationship between 𝑥 and 𝜋
in non-linear on the probability scale but linear on the logit scale.
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Binomial GLM - Logit Link
The problem is that effects are non-linear, thus is more difficult to
interpret and report model results
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Binomial GLM - Model fitting in R
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The big picture…
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Binomial GLM - Model fitting in R

We can model the contingency table presented before. We put data in
binary form:

## tv_shows
## exam 0 1
## 0 35 22
## 1 15 28

## tv_shows exam
## 1 1 0
## 2 1 1
## 3 1 1
## 4 1 1
## 5 ... ...
## 6 0 0
## 7 0 1
## 8 0 0
## 9 0 0
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Binomial GLM - Intercept only model
Let’s start from the simplest model (often called null model) where there
are no predictors:
fit0 <- glm(exam ~ 1, data = dat, family = binomial(link = "logit"))
summary(fit0)

##
## Call:
## glm(formula = exam ~ 1, family = binomial(link = "logit"), data = dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.060 -1.060 -1.060 1.299 1.299
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2819 0.2020 -1.395 0.163
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 136.66 on 99 degrees of freedom
## AIC: 138.66
##
## Number of Fisher Scoring iterations: 4
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Binomial GLM - Intercept only model

When fitting an intercept-only model, the parameter is the average value
of the y variable:

log( 𝜋
1 − 𝜋) = 𝛽0

𝜋 = 𝑒𝛽0

1 + 𝑒𝛽0
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Binomial GLM - Intercept only model

In R, the 𝑙𝑜𝑔𝑖𝑡(𝜋) is computed using qlogis() that is the q + logis
combination of functions to work with probability distributions. The
𝑙𝑜𝑔𝑖𝑡−1 thus the inverse of the logit function is plogis():
# average y on the respo nse scale
mean(dat$exam)

## [1] 0.43

c("logit" = coef(fit0)[1],
"inv-logit" = plogis(coef(fit0)[1])

)

## logit.(Intercept) inv-logit.(Intercept)
## -0.2818512 0.4300000
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Binomial GLM - Link function (TIPS)

If you are not sure about how to transform using the link function you can
directly access the family() object in R that contains the appropriate link
function and the corresponding inverse.
bin <- binomial(link = "logit")
bin$linkfun() # the same as plogis
bin$linkinv() # the same as qlogis
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Binomial GLM - Model with X
Now we can add the tv_shows predictor. Now the model has two
coefficients. Given that the tv_shows is a binary variable, the intercept is
the average y when tv_shows is 0, and the tv_shows coefficient is the
increase in y for a unit increase in tv_shows:
fit <- glm(exam ~ tv_shows, data = dat, family = binomial(link = "logit"))
summary(fit)

##
## Call:
## glm(formula = exam ~ tv_shows, family = binomial(link = "logit"),
## data = dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2814 -0.8446 -0.8446 1.0769 1.5518
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8473 0.3086 -2.746 0.00604 **
## tv_shows 1.0885 0.4200 2.592 0.00956 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 129.68 on 98 degrees of freedom
## AIC: 133.68
##
## Number of Fisher Scoring iterations: 4

31 / 166



Binomial GLM - Model with X

Thinking about our data, the (Intercept) is the probability of passing
the exam without watching tv-shows. The tv_shows (should be) the
difference in the probability of passing the exam between people who
watched or did not watched tv-shows, BUT:

• we are on the logit scale. Thus we are modelling log(odds) and not
probabilities

• a difference on the log scale is a ratio on the raw scale. Thus taking
the exponential of tv_shows we obtain the ratio of odds of passing
the exam watching vs non-watching tv-shows. Do you remember
something?
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Binomial GLM - Model with 𝑋1

The tv_shows is exactly the Odds Ratio that we calculated on the
contingency table:
# from model coefficients
exp(coef(fit)["tv_shows"])

## tv_shows
## 2.969697

# from the contingency table
odds_ratio(mean(dat$exam[dat$tv_shows == 1]),

mean(dat$exam[dat$tv_shows == 0]))

## [1] 2.969697
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Section 2

Binomial GLM - Parameter Intepretation
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Binomial GLM - Model Intepretation

Given the non-linearity and the link function, parameter intepretation is
not easy for GLMs. In the case of the Binomial GLM we will se:

• interpreting model coefficients on the linear and logit scale
• odds ratio (already introduced)
• the divide by 4 rule [1], [2]
• marginal effects
• predicted probabilities
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Binomial GLM - Intepreting model coefficients

Models coeffiecients are intepreted in the same way as standard regression
models. The big difference concerns:

• numerical predictors
• categorical predictors

Using contrast coding and centering/standardizing we can make model
coeffiecients more intepretable or tailored to our research question.
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Binomial GLM - Categorical predictors

We we use a categorical predictor with 𝑝 levels, the model will estimate
𝑝 − 1 parameters. The interpretation of these parameters is controlled by
the contrast coding. In R the default is the treatment coding (or dummy
coding). Essentially R create 𝑝 − 1 dummy variables (0 and 1) where 0 is
the reference level (usually the first category) and 1 is the current level.
We can see the coding scheme using the model.matrix() function that
return the 𝑋 matrix:

## X.Intercept. tv_shows
## 1 1 1
## 2 1 1
## 3 1 1
## 4 1 1
## 5 ... ...
## 6 1 0
## 7 1 0
## 8 1 0
## 9 1 0
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Binomial GLM - Categorical predictors
In the simple case of the exam dataset, the intercept (𝛽0) is the reference
level (default to 0 because is the first) and 𝛽0 is the difference between the
actual level and the reference level. If we change the order of the levels we
could change the intercept value while 𝛽1 will be the same. As an example
we could use the so-called sum to zero coding where instead of assigning 0
and 1 we use different values. For example assigning -0.5 and 0.5 will
make the intercept the grand-mean:
dat$tv_shows0 <- ifelse(dat$tv_shows == 0, -0.5, 0.5)
fit <- glm(exam ~ tv_shows0, data = dat, family = binomial(link = "logit"))
# grand mean
mean(c(mean(dat$exam[dat$tv_shows == 1]), mean(dat$exam[dat$tv_shows == 0])))

## [1] 0.43

# intercept
plogis(coef(fit)[1])

## (Intercept)
## 0.4248077

38 / 166



Binomial GLM - Categorical predictors
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Binomial GLM - Numerical predictors
With numerical predictors the idea is the same as categorical predictors. In
fact, categorical predictors are converted into numbers (e.e., 0 and 1 or
-0.5 and 0.5). The only caveat is that the effects are linear only the logit
scale. Thus 𝛽1 is interpreted in the same way as standard linear models
only on the link-function scale. For the binomial
GLM the 𝛽1 is the increase in the 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠(𝜋)) for a unit-increase in the
𝑥. In the response (probability) scale, the 𝛽1 is the multiplicative increase
in the odds of 𝑦 = 1 for a unit increase in the predictor.
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Binomial GLM - Numerical predictors

With numerical predictors we could mean-center and or standardize the
predictors. With centering (similarly to the categorical example) we
change the interpretation of the intercept. Standardizing is helpful to have
more meaningful 𝛽 values. The 𝛽𝑖 of a centered predictor is the increase in
𝑦 for a increase in one standard deviation of 𝑥.

𝑥𝑐𝑒𝑛 = 𝑥𝑖 − ̂𝑥

𝑥𝑧 = 𝑥𝑖 − ̂𝑥
𝜎𝑥
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Binomial GLM - Numerical predictors
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Binomial GLM - Numerical predictors
Let’s return to our teddy child example and fitting the proper model:
fit_glm <- glm(Depression_pp01 ~ Parental_stress, data = teddy, family = binomial(link = "logit"))
summary(fit_glm)

##
## Call:
## glm(formula = Depression_pp01 ~ Parental_stress, family = binomial(link = "logit"),
## data = teddy)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2852 -0.5165 -0.4509 -0.3861 2.3096
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.323906 0.690689 -6.260 3.84e-10 ***
## Parental_stress 0.036015 0.009838 3.661 0.000251 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.13 on 378 degrees of freedom
## Residual deviance: 271.23 on 377 degrees of freedom
## AIC: 275.23
##
## Number of Fisher Scoring iterations: 5
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Binomial GLM - Numerical predictors

The (Intercept) (𝛽0) is the probability of having post-partum depression
for a mother with parental stress zero (maybe better centering?)

𝑝(𝑦𝑒𝑠|𝑥 = 0) = 𝑔−1(𝛽0)
plogis(coef(fit_glm)["(Intercept)"])

## (Intercept)
## 0.01307482
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Binomial GLM - Numerical predictors

The Parental_stress (𝛽1) is the increase in the 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) of having the
post-partum depression for a unit increase in the parental stress index. If
we take the exponential of 𝛽1 we obtain the increase in the 𝑜𝑑𝑑𝑠 of having
post-partum depression for a unit increase in parental stress index.
exp(coef(fit_glm)["Parental_stress"])

## Parental_stress
## 1.036671
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Binomial GLM - Numerical predictors
The problem is that, as shown before, the effects are non-linear on the
probability scale while are linear on the logit scale. On the logit scale, all
differences are constant:
pr <- list(c(10, 11), c(50, 51), c(70, 71))

predictions <- lapply(pr, function(x) {
predict(fit_glm, newdata = data.frame(Parental_stress = x))

})

predictions

## [[1]]
## 1 2
## -3.963759 -3.927744
##
## [[2]]
## 1 2
## -2.523171 -2.487156
##
## [[3]]
## 1 2
## -1.802877 -1.766862

# notice that the difference is exactly the Parental_stress parameter
sapply(predictions, diff)

## 2 2 2
## 0.0360147 0.0360147 0.0360147
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Binomial GLM - Numerical predictors
While on the probability scale, the differences are not the same. This is
problematic when interpreting the results of a Binomial GLM with a
numerical predictor.
(predictions <- lapply(predictions, plogis))

## [[1]]
## 1 2
## 0.01863764 0.01930790
##
## [[2]]
## 1 2
## 0.07424969 0.07676350
##
## [[3]]
## 1 2
## 0.1415012 0.1459330

sapply(predictions, diff)

## 2 2 2
## 0.0006702661 0.0025138036 0.0044317558
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Binomial GLM - Divide by 4 rule

The divide by 4 rule is a very easy way to evaluate the effect of a
continous predictor on the probability.
Given the non-linearity, the derivative of the logistic function (i.e., the
slope) is maximal when predicts probabilities around ~0.5.
In fact, 𝛽𝑖𝜋(1 − 𝜋) is maximized when 𝜋 = 0.5 turning into 𝛽𝑖0.25 (i.e.,
dividing by 4).
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Binomial GLM - Divide by 4 rule
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Binomial GLM - Predicted probabilities

In a similar way we can use the inverse logit function to find the predicted
probability specific values of 𝑥. For example, the difference between
𝑝(𝑦 = 1|𝑥 = 2.5) − 𝑝(𝑦 = 1|𝑥 = 5) can be calculated using the model
equation:

• 𝑙𝑜𝑔𝑖𝑡−1𝑝(𝑦 = 1|𝑥 = 2.5) = 𝑒𝛽0+𝛽12.5

1+𝑒𝛽0+𝛽12.5

• 𝑙𝑜𝑔𝑖𝑡−1𝑝(𝑦 = 1|𝑥 = 5) = 𝑒𝛽0+𝛽15

1+𝑒𝛽0+𝛽15

• 𝑙𝑜𝑔𝑖𝑡−1𝑝(𝑦 = 1|𝑥 = 5) − 𝑙𝑜𝑔𝑖𝑡−1𝑝(𝑦 = 1|𝑥 = 2.5)
coefs <- coef(fit)
plogis(coefs[1] + coefs[2]*5) - plogis(coefs[1] + coefs[2]*2.5)

## (Intercept)
## 0.2237369
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Binomial GLM - Predicted probabilities

In R we can use directly the predict() function with the argument type
= "response" to return the predicted probabilities instead of the logits:
preds <- predict(fit, newdata = list(x = c(2.5, 5)), type = "response")
preds

## 1 2
## 0.0329886 0.2567255

preds[2] - preds[1]

## 2
## 0.2237369
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Binomial GLM - Predicted probabilities

I have written the epredict() function that extend the predict()
function giving some useful messages when computing predictions. you
can use it with every model and also with multiple predictors.
epredict(fit, values = list(x = c(2.5, 5)), type = "response")

## y ~ -5.693 + 0.926*c(2.5, 5)

## [1] 0.0329886 0.2567255
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Binomial GLM - Marginal effects

Marginal effects can be considered very similar to the divide by 4 rule. A
particularly useful type of marginal effect is the average marginal effect.
While the divide by 4 rule estimate the maximal difference (in probability
scale) according to 𝑥, the average marginal effect is the average of all
slopes (i.e., derivatives) interpreted as the average change in probability
scale across all unit increases in 𝑥.
# calculate the derivative
calc_deriv <- function(b0, b1, x){

(b1 * exp(b0 + b1 * x)) / (1 + (exp(b0 + b1 * x)))^2
}

coefs <- coef(fit)
dd <- calc_deriv(coefs[1], coefs[2], dat$x)
mean(dd)

## [1] 0.09338663
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Binomial GLM - Marginal effects

More efficiently we can do the same using the margins package in R:
mrg <- margins::margins(fit)
summary(mrg)

## factor AME SE z p lower upper
## x 0.0934 0.0031 29.9339 0.0000 0.0873 0.0995
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Section 3

Binomial GLM - Inference
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Binomial GLM - Wald tests

The basic approach when doing inference with GLM is intepreting the
Wald test of each model coefficients. The Wald test is calculated as
follows:

𝑧 = 𝛽𝑖 − 𝛽0
𝜎𝛽𝑖

Calculating the p-value based on a standard normal distribution.
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Binomial GLM - Wald-type confidence intervals

Wald-type confidence interval (directly from model summary), where Φ is
the cumulative Gaussian function qnorm():

95%𝐶𝐼 = ̂𝛽 ± Φ(𝛼/2)𝑆𝐸𝛽

(summ <- data.frame(summary(fit)$coefficients))

## Estimate Std..Error z.value Pr...z..
## (Intercept) -0.6632942 0.2985407 -2.221788 0.0262976067
## tv_shows 1.4170660 0.4254859 3.330465 0.0008670096

# 95% confidence interval
summ$Estimate + qnorm(c(0.025, 0.95))*summ$Std..Error

## [1] -1.248423 2.116928
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Binomial GLM - Wald-type confidence intervals
You can also use the plot_param() function to represent the sampling
distribution and the confidence interval:
plot_param(fit, "tv_shows", ci = "z") + mytheme()
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Binomial GLM - Profile likelihood confidence
intervals

The computation is a little bit different and they are not always symmetric:
# profile likelihood, different from wald type
confint(fit)

## 2.5 % 97.5 %
## (Intercept) -1.2711814 -0.09226204
## tv_shows 0.5998267 2.27401606
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Binomial GLM - Profile likelihood confidence
intervals
Again we can use the plot_param() function:
plot_param(fit, "tv_shows", ci = "profile") + mytheme()
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Binomial GLM - Confidence intervals

When calculating confidence intervals it is important to consider the link
function. In the same way as we compute the inverse logit function on the
parameter value, we could revert also the confidence intervals.
IMPORTANT, do not apply the inverse logit on the standard error
and then compute the confidence interval.
fits <- broom::tidy(fit) # extract parameters as dataframe
fits

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -1.52 0.368 -4.12 0.0000380
## 2 tv_shows 2.01 0.469 4.27 0.0000193
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Binomial GLM - Confidence intervals

b <- fits$estimate[2]
se <- fits$std.error[2]

# correct, wald-type confidence intervals
c(b = exp(b), lower = exp(b - 2*se), upper = exp(b + 2*se))

## b lower upper
## 7.432749 2.906586 19.007090

# correct, likelihood based confidence intervals
exp(confint(fit, "tv_shows"))

## 2.5 % 97.5 %
## 3.062659 19.530409

# wrong wald type
c(b = exp(b), lower = exp(b) - 2*exp(se), upper = exp(b) + 2*exp(se))

## b lower upper
## 7.432749 4.234493 10.631004
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Binomial GLM - Confidence intervals

The same principle holds for predicted probabilities. First compute the
intervals on the logit scale and then transform-back on the probability
scale:
fits <- dat |>

select(tv_shows) |>
distinct() |>
add_predict(fit, se.fit = TRUE)

fits$p <- plogis(fits$fit)
fits$lower <- plogis(with(fits, fit - 2*se.fit))
fits$upper <- plogis(with(fits, fit + 2*se.fit))

fits

## # A tibble: 2 x 7
## tv_shows fit se.fit residual.scale p lower upper
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.490 0.291 1 0.620 0.477 0.745
## 2 0 -1.52 0.368 1 0.180 0.0951 0.314
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Binomial GLM - Anova

With multiple predictors, especially with categorical variables with more
than 2 levels, we can compute the an anova-like analysis individuating the
effect of each predictor. In R we can do this using the car::Anova()
function. Let’s simulate a model with a 2x2 interaction:

## id x1 x2 y
## 1 1 a c 1
## 2 2 a d 0
## 3 3 b c 0
## 4 4 b d 0
## 5 5 a c 1
## 6 6 a d 0

We can fit the most complex model containing the two main effects and
the interaction2:
fit_max <- glm(y ~ x1 + x2 + x1:x2, data = dat, family = binomial(link = "logit")) # same as x1 * x2

2I set the contrasts for the two factors as contr.sum()/2 that are required for a proper
analysis of factorial designs
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Binomial GLM - Anova
summary(fit_max)

##
## Call:
## glm(formula = y ~ x1 + x2 + x1:x2, family = binomial(link = "logit"),
## data = dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.066 -1.011 -0.459 1.293 2.146
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0151 0.2279 -4.454 8.44e-06 ***
## x11 0.5724 0.4559 1.256 0.20924
## x21 1.3565 0.4559 2.976 0.00292 **
## x11:x21 -0.8704 0.9117 -0.955 0.33973
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 144.87 on 119 degrees of freedom
## Residual deviance: 133.54 on 116 degrees of freedom
## AIC: 141.54
##
## Number of Fisher Scoring iterations: 4
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Binomial GLM - Anova

Then using car::Anova(). For each effect we have the 𝜒2 statistics and
the associated p-value. The null hypothesis is that the specific factor did
not contribute in reducing the residual deviance.
car::Anova(fit_max)

## Analysis of Deviance Table (Type II tests)
##
## Response: y
## LR Chisq Df Pr(>Chisq)
## x1 1.0943 1 0.295529
## x2 9.3856 1 0.002187 **
## x1:x2 0.9403 1 0.332195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Binomial GLM - Model comparison

The table obtained with car::Anova() is essentially a model comparison
using the Likelihood Ratio test. This can be done using the anova(...)
function.

𝐷 = 2(𝑙𝑜𝑔(ℒ𝑓𝑢𝑙𝑙) − 𝑙𝑜𝑔(ℒ𝑟𝑒𝑑𝑢𝑐𝑒𝑑))
𝐷 ∼ 𝜒2

𝑑𝑓𝑓𝑢𝑙𝑙−𝑑𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑
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Binomial GLM - Model comparison

To better understanding, the x2 effect reported in the car::Anova()
table is a model comparison between a model with y ~ x1 + x2 and a
model without x2. The difference between these two model is the unique
contribution of x2 after controlling for x1:
fit <- glm(y ~ x1 + x2, data = dat, family = binomial(link = "logit"))
fit0 <- glm(y ~ x1, data = dat, family = binomial(link = "logit"))

anova(fit0, fit, test = "LRT") # ~ same as car::Anova(fit_max)

## Analysis of Deviance Table
##
## Model 1: y ~ x1
## Model 2: y ~ x1 + x2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 118 143.86
## 2 117 134.48 1 9.3856 0.002187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Binomial GLM - Model comparison

The model comparison using anova() (i.e., likelihood ratio tests) is limited
to nested models thus models that differs only for one term. For example:
fit1 <- glm(y ~ x1, data = dat, family = binomial(link = "logit"))
fit2 <- glm(y ~ x2, data = dat, family = binomial(link = "logit"))
fit3 <- glm(y ~ x1 + x2, data = dat, family = binomial(link = "logit"))

fit1 and fit2 are non-nested because we have the same number of
predictors (thus degrees of freedom). fit3 and fit1/fit2 are nested
because fit3 is more complex and removing one term we can obtain the
less complex models.
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Binomial GLM - Model comparison

anova(fit1, fit2, test = "LRT") # do not works properly

## Analysis of Deviance Table
##
## Model 1: y ~ x1
## Model 2: y ~ x2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 118 143.86
## 2 118 135.57 0 8.2914

anova(fit1, fit3, test = "LRT") # same anova(fit2, fit3)

## Analysis of Deviance Table
##
## Model 1: y ~ x1
## Model 2: y ~ x1 + x2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 118 143.86
## 2 117 134.48 1 9.3856 0.002187 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Binomial GLM - Information Criteria

As for standard linear models I can use the Akaike Information Criteria
(AIC) or the Bayesian Information Criteria (BIC) to compare non-nested
models. The downside is not having a properly hypothesis testing setup.
data.frame(BIC(fit1, fit2, fit3)) |>

arrange(BIC)

## df BIC
## fit2 2 145.1455
## fit3 3 148.8387
## fit1 2 153.4369

data.frame(AIC(fit1, fit2, fit3)) |>
arrange(AIC)

## df AIC
## fit2 2 139.5705
## fit3 3 140.4763
## fit1 2 147.8619
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Section 4

Binomial GLM - Plotting effects
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Binomial GLM - Marginal effects

When plotting a binomial GLM the most useful way is plotting the
marginal probabilities and standard errors/confidence intervals for a given
combination of predictors. Let’s make an example for:

• simple GLM with 1 categorical/numerical predictor
• GLM with 2 numerical/categorical predictors
• GLM with interaction between numerical and categorical predictors
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Binomial GLM - Marginal effects

A general workflow could be:

• fit the model
• use the predict() function giving the grid of values on which

computing predictions
• calculating the confidence intervals
• plotting the results

Everything can be simplified using some packages to perform each step
and returning a plot:

• allEffects() from the effects() package (return a base R plot)
• ggeffect() from the ggeffect() package (return a ggplot2

object)
• plot_model from the sjPlot package (similar to ggeffect())
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Binomial GLM - 1 categorical predictor
In this situation we can just plot the marginal probabilities for each level of
the categorical predictor. Plotting our exam dataset:
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Binomial GLM - 1 numerical predictor
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Binomial GLM - allEffects()
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Binomial GLM - ggeffect()/plot_model()
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Binomial GLM - Plotting coefficients

Sometimes could be useful to plot
the estimated sampling distribution
of a coefficient. For example, we
can plot the tv_shows effect on
our example. I’ve written the
plot_param() function that
directly create a basic-plot given
the model and the coefficient name.
The plot highlight the null value
and the 95% Wald confidence
interval.
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Section 5

GLM - Diagnostic
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GLM - Diagnostic

The diagnostic for GLM is similar to standard linear models. Some areas
are more complicated for example residual analysis and goodness of fit.
We will see:

• Deviance
• 𝑅2

• Residuals
• Types of residuals
• Residual deviance

• Classification accuracy
• Outliers and influential observations
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Likelihood
The likelihood is the joint probability of the observed data viewed as a
function of the parameters of a statistical model.

log ℒ(𝜇|𝑥) =
𝑛

∑
𝑖=1

log(𝜇|𝑥𝑖)

x <- rnorm(10) # data from normal distribution

# data
x

## [1] -1.5324038 1.9535253 1.2066729 -1.2474664 -0.9444257 -0.7751357
## [7] 0.4442473 0.8424928 0.2315650 -1.2960886

# the model is a normal distribution with mu = 0 and sd = 1
dnorm(x, 0, 1)

## [1] 0.12330810 0.05918607 0.19263303 0.18322786 0.25540406 0.29542030
## [7] 0.36145550 0.27975652 0.38838829 0.17224086

# log likelihood
sum(log(dnorm(x, 0, 1)))

## [1] -15.84446
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Likelihood
By summing the logarithm all the red segments we obtain the log
likelihood of the model given the observed data.

logL = − 15.844
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Likelihood
In the previous slide we tried only 3 values for the mean. Let’s image to
calculate the log likelihood for several different means. The parameter with
that is associated with highest likelihood is called the maximum likelihood
estimator. In fact, the 𝜇 = 0 is associated with the highest likelihood.
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Deviance

The (residual) deviance in the context of GLM can be considered as the
distance between the current model and a perfect model (often called
saturated model).

𝐷𝑟𝑒𝑠 = −2[log(ℒ𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − (log ℒ𝑠𝑎𝑡)]

Where ℒ is the likelihood of the considered model (see the previous
slides). Clearly, the lower the deviance, the closer the current model to the
perfect model suggesting a good fit.
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Deviance - Saturated model
The saturated model is a model where each observation 𝑥𝑖 has a
parameter.
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Deviance - Null model

Another important quantity is the null deviance that is expressed as the
distance between the null model and the saturated model.

𝐷𝑛𝑢𝑙𝑙 = −2[log(ℒ𝑛𝑢𝑙𝑙) − (log ℒ𝑠𝑎𝑡)]

The null deviance can be interpreted as the maximal deviance because is
estimated using a model without predictors. A good model will have a
residual deviance lower than the null model.
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Deviance - Null model
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Deviance - Likelihood Ratio Test

When we perform a likelihood ratio test (see previous slides) we are
essentially comparing the residual deviance (or the likelihood) of two
models.
fit_null <- glm(y ~ 1, data = dat, family = binomial(link = "logit"))
fit_current <- glm(y ~ x, data = dat, family = binomial(link = "logit"))
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Deviance - Likelihood Ratio Test
With the null model clearly the residual deviance is the same as the null
deviance because we are not using predictors to reduce the deviance.
summary(fit_null)

##
## Call:
## glm(formula = y ~ 1, family = binomial(link = "logit"), data = dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.044 -1.044 -1.044 1.317 1.317
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3228 0.2865 -1.126 0.26
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 68.029 on 49 degrees of freedom
## Residual deviance: 68.029 on 49 degrees of freedom
## AIC: 70.029
##
## Number of Fisher Scoring iterations: 4
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Deviance - Likelihood Ratio Test
If the predictor x is useful in explaining y the residual deviance will be
reduced compared to the null (overall deviance).
summary(fit_current)

##
## Call:
## glm(formula = y ~ x, family = binomial(link = "logit"), data = dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.9121 -0.4071 -0.2063 0.6259 1.7336
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.045 1.470 -3.432 0.000599 ***
## x 9.535 2.659 3.586 0.000336 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 68.029 on 49 degrees of freedom
## Residual deviance: 36.745 on 48 degrees of freedom
## AIC: 40.745
##
## Number of Fisher Scoring iterations: 6
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Deviance - Likelihood Ratio Test

Comparing the two models we can understand if the deviance reduction
can be considered statistically significant.
anova(fit_null, fit_current, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 49 68.029
## 2 48 36.745 1 31.284 2.229e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the difference between the two residual deviances is the test
statistics that is distributed as a 𝜒2 with 𝑑𝑓 = 1.
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Deviance - Likelihood Ratio Test
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Deviance3
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3Adapted from https://bookdown.org/egarpor/SSS2-UC3M/logreg-deviance.html
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Deviance - Example #extra

Let’s fit the three models:
# null
fit0 <- glm(exam ~ 1, data = dat, family = binomial(link = "logit"))
# current
fit <- glm(exam ~ tv_shows, data = dat, family = binomial(link = "logit"))
# saturated
fits <- glm(exam ~ 0 + id, data = dat, family = binomial(link = "logit"))
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Deviance - Example #extra
We can calculate the residual deviance:
-2*(logLik(fit) - logLik(fits))

## 'log Lik.' 126.3001 (df=2)

deviance(fit)

## [1] 126.3001

We can calculate the null deviance:
-2*(logLik(fit0) - logLik(fits))

## 'log Lik.' 130.6836 (df=1)

deviance(fit0)

## [1] 130.6836
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Binomial GLM - 𝑅2

Compared to the standard linear regression, there are multiple ways to
calculate an 𝑅2 like measure for GLMs and there is no consensus about
the most appropriate method. There are some useful resources:

• https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-
are-pseudo-r-squareds/

To note, some measures are specific for the binomial GLM while other
measures can be applied also to other GLMs (e.g., the poisson)
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Binomial GLM - 𝑅2

We will se:

• McFadden’s pseudo-𝑅2 (for GLMs in general)
• Tjur’s 𝑅2 (only for binomial/binary models)
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McFadden’s pseudo-𝑅2

The McFadden’s pseudo-𝑅2 compute the ratio between the log-likelihood
of the intercept-only (i.e., null) model and the current model[3]:

𝑅2 = 1 − log(ℒ𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
log(ℒ𝑛𝑢𝑙𝑙)

There is also the adjusted version that take into account the number of
parameters of the model. In R can be computed manually or using the
performance::r2_mcfadden():
performance::r2_mcfadden(fit)

## # R2 for Generalized Linear Regression
## R2: 0.034
## adj. R2: 0.018
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Tjur’s 𝑅2

This measure is the easiest to interpret and calculate but can only be
applied for binomial binary models [4]. Is the absolute value of the
difference between the proportions of correctly classifying 𝑦 = 1 and 𝑦 = 0
from the model:

𝜋1 = 𝑝(𝑦𝑖 = 1| ̂𝑦𝑖 = 1)
𝜋2 = 𝑝(𝑦𝑖 = 0| ̂𝑦𝑖 = 0) = 1 − 𝜋1

𝑅2 = |𝜋1 − 𝜋2|

performance::r2_tjur(fit2)

## Tjur's R2
## 0.6070024
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Binomial GLM - Residuals

As for standard linear models there are different types of residuals:

• raw (response) residuals
• pearson residuals
• deviance residuals
• standardized residuals
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Raw Residuals
Raw residuals, also called response residuals are the simplest type of
residuals. They are calculated as in standard regression as:

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖

Where ̂𝑦𝑖 are the fitted values where the inverse of the link function has
been applied.
In R:
# equivalent to residuals(fit, type = "response")
ri <- fit$y - fitted(fit)
ri[1:5]

## 1 2 3 4 5
## -0.4680320 0.1392685 0.3288338 -0.6895866 -0.1647523

The problem is that in GLMs the mean and the variance of the distribution
are not independent, creating problems in residual analysis.
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Raw Residuals
We can use the custom function plot_residuals() to plot different type
of residuals against fitted values:
plot_resid(fit, type = "response") + mytheme()
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Why raw residuals are problematic?
This plot4 shows an example with the same residual for two different 𝑥
values on a Poisson GLM. Beyond the model itself, the same residual can
be considered as extreme for low 𝑥 values and plausible for high 𝑥 values:

0

25

50

75

0.0 0.5 1.0 1.5
x

y

4Adapted from Dunn (2018), Fig. 8.1
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Binomial GLM - Binned (raw) Residuals

Gelman and colleagues [2] proposed a type of residuals called binned
residuals to solve the problem of the previous plot for Binomial GLMs:

• divide the fitted values into 𝑛 bins. The number is arbitrary but we
need each bin to have enough observation to compute a reliable
average

• calculate the average fitted value and residual for each bin
• for each bin we can compute the standard error as 𝑆𝐸 = �̂�𝑗(1−𝑝𝑗)

𝑛𝑗
where 𝑝𝑗 is the average fitted probability and 𝑛𝑗 is the number of
observation in the bin 𝑗

• Then we can plot each bin and the confidence intervals (e.g., as
±2 ∗ 𝑆𝐸) where ~95% of binned residuals should be within the CI if
the model is true
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Binomial GLM - Binned (raw) Residuals

We can use the performance::binned_residuals(model = , n_bins
= ) function to automatically create and plot the binned residuals:
bres <- performance::binned_residuals(fit, n_bins = 10) # 10 is the default
head(data.frame(bres))

## xbar ybar n x.lo x.hi se ci_range
## 1 0.02034898 -0.02034898 5 0.01049968 0.03076902 0.008487489 0.004330431
## 2 0.06318050 0.13681950 5 0.03652146 0.08771356 0.398053007 0.203092001
## 3 0.13296139 0.06703861 5 0.09002218 0.16235891 0.378358525 0.193043611
## 4 0.21130882 -0.01130882 5 0.16475227 0.26352505 0.367224937 0.187363104
## 5 0.36239336 -0.16239336 5 0.29508386 0.41270883 0.405879048 0.207084952
## 6 0.58529230 0.01470770 5 0.46803198 0.63625848 0.449946460 0.229568739
## CI_low CI_high group
## 1 -0.02883647 -0.01186149 no
## 2 -0.26123351 0.53487250 yes
## 3 -0.31131991 0.44539714 yes
## 4 -0.37853376 0.35591611 yes
## 5 -0.56827241 0.24348569 yes
## 6 -0.43523876 0.46465416 yes
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Binomial GLM - Binned (raw) Residuals
plot(bres)
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Pearson residuals

Pearson residuals are raw residuals divided by the standard deviation of
each residual. Given that the mean-variance relationship of GLMs, dividing
by the standard deviation solve the problem of slide 104. The denominator
can be calculated just using the appropriate variance formula for that
specific GLM.

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖
√𝑉 ( ̂𝑦𝑖)
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Pearson vs Raw residuals
We can see the difference for a Poisson model5 when using raw vs pearson
residuals. The non-constant variance is controlled on the right.
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5We are using a Poisson model only because the residual pattern is more clear compared to a
binomial model
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Binomial GLM - Pearson residuals

For the Binomial (Bernoulli) GLM, the variance is calculated as ̂𝜋(1 − ̂𝜋)
where ̂𝜋 is the residual value.

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖
√ ̂𝑦𝑖(1 − ̂𝑦𝑖)

# equivalent to residuals(fit, type = "pearson")
yi <- fitted(fit)
ri_pearson <- ri / sqrt(yi * (1 - yi))
ri_pearson[1:5]

## 1 2 3 4 5
## -0.9379831 0.4022468 0.6999599 -1.4904733 -0.4441279
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Deviance residuals

Deviance residuals are based on the residual deviance that we defined
before. In fact, the residual deviance was just the sum of squared deviance
residuals.

𝑟𝑖 = 𝑠𝑖𝑔𝑛(𝑦𝑖 − ̂𝑦𝑖)√−2[log ℒ𝑦𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
− log ℒ𝑦𝑖𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑

]
Where 𝑠𝑖𝑔𝑛 is the sign of the raw residual 𝑖. For the Bernoulli model the
log ℒ𝑦𝑖𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑

is always 0.
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Binomial GLM - Deviance Residuals
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Binomial GLM - Deviance Residuals #extra
To calculate and demonstrate manually the deviance residuals we can
compute them manually in R:
# residual(fit, type = "deviance")
yhat <- fitted(fit) # fitted
y <- fit$y # actual values

# the likelihood is dbinom
ri_dev <- sign(y - yhat) * sqrt(-2*(log(dbinom(y, 1, yhat)) - log(dbinom(y, 1, y))))

# notice that the log lik of the saturated model log(dbinom(y, 1, y)) is 0
log(dbinom(y, 1, y))

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ri_dev[1:5]

## 1 2 3 4 5
## -0.2370588 0.3033530 -1.0310244 0.2331303 -0.8429485

residuals(fit, type = "deviance")[1:5]

## 1 2 3 4 5
## -0.2370588 0.3033530 -1.0310244 0.2331303 -0.8429485
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Quick recap about hat values in linear regression

The hat matrix 𝐻 is calculated as 𝐻 = 𝑋 (𝑋⊤𝑋)−1 𝑋⊤ is a 𝑛 × 𝑛
matrix where 𝑛 is the number of observations. The diagonal of the 𝐻
matrix contained the hat values or leverages.
The 𝑖𝑡ℎ leverage score (ℎ𝑖𝑖) is interpreted as the weighted distance
between 𝑥𝑖 and the mean of 𝑥𝑖’s. In practical terms is the 𝑖𝑡ℎ observed
value influence the 𝑖𝑡ℎ fitted value. An high leverage suggest that the
observation is far from the mean of predictors and have an high influence
on the fitted values.

• ℎ𝑖𝑖 ranges between 0 and 1
• The sum of all ℎ𝑖𝑖 values is the number of parameters 𝑝
• As a rule of thumb, an observation have an high leverage if ℎ𝑖𝑖 > 2ℎ̄

where ℎ̄ is the average hat value
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Quick recap about hatvalues in linear regression
For a simple linear regression (𝑦 ∼ 𝑥) the hat values are calculated as:

ℎ𝑖 = 1
𝑛 + (𝑋𝑖 − �̄�)2

∑𝑛
𝑗=1(𝑋𝑖 − �̄�)2

In R the function hatvalues() return the diagonal of the 𝐻 matrix for
glm and lm:
hatvalues(fit)[1:10]

## 1 2 3 4 5 6 7
## 0.02874015 0.03492581 0.03968557 0.02782301 0.04357230 0.04652508 0.04435804
## 8 9 10
## 0.04012613 0.03948651 0.04743780

To note, for GLM and multiple regression in general, the equation is
different and more complicated but the intepretation and the R
implementation is the same.
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Standardized Residuals

Both the response, pearson and deviance residuals can be considered as
raw residuals. We can standardize residuals by dividing for the standard
error computed with the hat values. In this way, the distribution will be
approximately normal with 𝜇 = 0 and 𝜎 = 1.

𝑟𝑠𝑖
= 𝑟𝑖

√(1 − ℎ̂𝑖𝑖)

Where 𝑟𝑖 can be raw, pearson or deviance residuals.
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Standardized Residuals

In R they can be extracted using rstandard():
rstandard(fit, type = "pearson")[1:5]

## 1 2 3 4 5
## -0.1712897 0.2208858 -0.8546823 0.1683326 -0.6678440

rstandard(fit, type = "deviance")[1:5]

## 1 2 3 4 5
## -0.2405406 0.3087934 -1.0521126 0.2364427 -0.8619359
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Binomial GLM Standardized Residuals #extra

We can try to manually calculate the residuals to better understand.
yhat <- fitted(fit) # fitted
yi <- fit$y # observed
hi <- hatvalues(fit) # diagonal of the hat matrix

# pearson residuals
pi <- (yi - yhat) / sqrt(yhat * (1 - yhat))

# standardized
pis <- pi / sqrt(1 - hi)
pis[1:5]

## 1 2 3 4 5
## -0.1712897 0.2208858 -0.8546823 0.1683326 -0.6678440

rstandard(fit, type = "pearson")[1:5]

## 1 2 3 4 5
## -0.1712897 0.2208858 -0.8546823 0.1683326 -0.6678440
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Binomial GLM Standardized Residuals #extra

# deviance (for binomial GLM the loglik of the saturated model is 0)
di <- sign(yi - yhat) * sqrt(-2*log(dbinom(y, 1, yhat)))

# standardized
dis <- di / sqrt(1 - hi)

dis[1:5]

## 1 2 3 4 5
## -0.2405406 0.3087934 -1.0521126 0.2364427 -0.8619359

rstandard(fit, type = "deviance")[1:5]

## 1 2 3 4 5
## -0.2405406 0.3087934 -1.0521126 0.2364427 -0.8619359
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Quantile residuals #extra
The quantile residuals is another proposal for residual analysis. The idea
is to map the quantile of the cumulative density function (CDF) of the
random component into the CDF of the normal distribution.

a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29a = 0.29

b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43b = 0.43

u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35u = runif(1, a, b) = 0.35

y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 14y = 140.00
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Binomial GLM - Quantile residuals #extra

Quantile residuals are very useful especially for Discrete GLMs (binomial
and poisson) and are exactly normally distributed (under respected model
assumptions) compared to deviance and pearson residuals [5]. They can
be calculated using the statmod::qresid(fit) function. Authors
suggest to run the function 4 times to disentagle between the
randomization and the systematic component.
statmod::qresid(fit)[1:5]

## [1] -0.33677932 1.04616589 -0.43878900 0.01511622 -1.07265867

statmod::qresid(fit)[1:5] # different every time

## [1] 1.2349067 -0.6689038 0.2171433 -0.9988869 -0.4189008
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Binomial GLM - Quantile residuals #extra
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Binomial GLM - Classification accuracy/Error rate

The error rate (ER) is defined as the proportion of cases for which the
deterministic prediction i.e. guessing 𝑦𝑖 = 1 if 𝑙𝑜𝑔𝑖𝑡−1( ̂𝑦𝑖) > 0.5 and
guessing 𝑦𝑖 = 0 if 𝑙𝑜𝑔𝑖𝑡−1( ̂𝑦𝑖) > 0.5 is wrong. Clearly, 1 − 𝐸𝑅 is the
classification accuracy.
I wrote the error_rate function that simply compute the error rate of a
given model:

error_rate <- function(fit){
pi <- predict(fit, type = "response")
yi <- fit$y
cr <- mean((pi > 0.5 & yi == 1) | (pi < 0.5 & yi == 0))

}
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Binomial GLM - Classification accuracy/Error rate

error_rate(fit)

## [1] 0.14

We could compare the error rate of a given model with the error rate of the
null model or another similar model (with a model comparison approach):
fit0 <- update(fit, . ~ -x) # removing the x predictor, now intercept only model
error_rate(fit0)

## [1] 0.48

# the error rate of the null model is ... greater/less than the actual model
er_ratio = error_rate(fit0)/error_rate(fit)

The error rate of the null model is 3.429 times greater than the actual
model.
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Binomial GLM - Outliers and influential
observations

Identification of influential observation and outliers of GLMs is very similar
to standard regression models. We will briefly see:

• Studentized residuals
• Cook Distances
• DFBETAs
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Binomial GLM - Cook Distances
The Cook Distance of an observation 𝑖 measured the impact of that
observation on the overall model fit. If removing the observation 𝑖 has an
high impact, the observation 𝑖 is likely an influential observation. For
GLMs they are defined as:

𝐷𝑖 = 𝑟2
𝑖

𝜙𝑝
ℎ𝑖𝑖

1 − ℎ𝑖𝑖

Where 𝑝 is the number of model parameters, 𝑟𝑖 are the standardized
pearson residuals (rstandard(fit, type = "pearson")) and ℎ𝑖𝑖 are
the hatvalues (leverages). 𝜙 is the dispersion parameter of the GLM that
for binomial and poisson models is fixed to 1 (see Dunn (2018, Table 5.1))
Usually an observation is considered influential if 𝐷𝑖 > 4

𝑛 where 𝑛 is the
sample size.
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Binomial GLM - DFBETAs

DFBETAs measure the impact of the observation 𝑖 on the estimated
parameter 𝑏𝑒𝑡𝑎𝑗:

𝐷𝐹𝐵𝐸𝑇 𝐴𝑆𝑖 =
𝛽𝑗 − 𝛽𝑗(𝑖))

𝜎𝛽𝑗(𝑖)

Where 𝑖 denote the parameters and standard error on a model fitted
without the 𝑖 observation. Usually an observation is considered influential
if |𝐷𝐹𝐵𝐸𝑇 𝐴𝑠𝑖| > 2√𝑛 where 𝑛 is the sample size.
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Binomial GLM - Extracting influence measures

In R we can use the influence.measures() function to calculate each
influence measure explained before6.
fit <- update(fit, data = fit$model[1:50, ])

infl <- influence.measures(fit)$infmat
head(infl)

## dfb.1_ dfb.x dffit cov.r cook.d hat
## 1 -0.04419414 0.04109800 -0.04442749 1.070827 0.0004340963 0.02874015
## 2 -0.04672053 0.05681844 0.06310261 1.075710 0.0008828590 0.03492581
## 3 -0.11865551 0.05713533 -0.23265873 1.028011 0.0150937972 0.03968557
## 4 -0.03348170 0.03972704 0.04294688 1.069920 0.0004054759 0.02782301
## 5 -0.14588644 0.10150547 -0.19921442 1.051194 0.0101596403 0.04357230
## 6 -0.07575414 0.10700698 0.14303484 1.074641 0.0048052405 0.04652508

6The function actually computes also other influence measures, see Dunn (2018, section
8.8.3) for other details
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Binomial GLM - Plotting influence measures
I wrote the cook_plot() function to easily plot the cook distances along
with the identification of influential observations:
cook_plot(fit)
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Binomial GLM - Plotting influence measures
I wrote the dfbeta_plot() function to easily plot the cook distances
along with the identification of influential observations:
dfbeta_plot(fit)
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Residuals vs Fitted plot

The residual vs fitted plot is very useful to identify pattern in residuals
and heteroskedasticity. Let’s generate some data where the true model is
𝑦𝑖 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 and fit a model with and without the quadratic
term7.

## x y n
## 1 0.00 1 50
## 2 0.01 0 50
## 3 0.02 0 50
## 4 0.03 0 50
## 5 0.04 0 50
## 6 0.05 0 50

fit_wrong <- glm(cbind(y, n - y) ~ x, data = dat, family = binomial(link = "logit"))
# poly 2 is a shortcut for fitting a quadratic term
fit_real <- glm(cbind(y, n - y) ~ poly(x, 2), data = dat, family = binomial(link = "logit"))

7Adapted from Dunn (2018, Figure 8.4)
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Residuals vs Fitted plot
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Residuals vs predictors
Another useful visual method is plotting residuals against each predictor
𝑥𝑗. In this case we have only one 𝑥:
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Binomial vs Binary

There are several practical differences between binomial and binary models:

• data structure
• fitting function in R
• residuals and residual deviance
• type of predictors #extra
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Binomial vs Binary data structure
The most basic Binomial regression is a vector of binary 𝑦 values and a
continuous or categorical predictor. Let’s see a common data structure in
this case:
n <- 30
x <- runif(n, 0, 1)
dat <- sim_design(ns = n, nx = list(x = x))
b0 <- qlogis(0.01)
b1 <- 8

dat |>
sim_data(plogis(b0 + b1*x), "binomial") |>
round(2) |>
trim_df(4)

## id x lp y
## 1 1 0.38 0.18 1
## 2 2 0.04 0.01 0
## 3 3 0.34 0.14 0
## 4 4 0.52 0.39 1
## 5 ... ... ... ...
## 6 27 0.57 0.49 1
## 7 28 0.28 0.09 0
## 8 29 0.03 0.01 0
## 9 30 0.13 0.03 0
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Binomial vs Binary data structure

Or equivalently with a categorical variable:
n <- 15
x <- c("a", "b")
dat <- sim_design(n, cx = list(x = x))
b0 <- qlogis(0.4)
b1 <- log(odds_ratio(0.7, 0.4))
dat$xd <- ifelse(dat$x == "a", 0, 1)

dat |>
sim_data(plogis(b0 + b1*xd), "binomial") |>
trim_df(4)

## id x x_c xd lp y
## 1 1 a 0 0 0.4 1
## 2 2 b 1 1 0.7 1
## 3 3 a 0 0 0.4 0
## 4 4 b 1 1 0.7 1
## 5 ... ... ... ... ... ...
## 6 27 a 0 0 0.4 1
## 7 28 b 1 1 0.7 1
## 8 29 a 0 0 0.4 0
## 9 30 b 1 1 0.7 1
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Binomial vs Binary data structure

When using a Binomial data structure we count the number of success for
each level of 𝑥. nc is the number of 1 responses, nf is the number of 0
response out of nt trials:
x <- seq(0, 1, 0.05)
nt <- 10
nc <- rbinom(length(x), nt, plogis(qlogis(0.01) + 8*x))
dat <- data.frame(x, nc, nf = nt - nc, nt)

dat |>
trim_df(4)

## x nc nf nt
## 1 0 0 10 10
## 2 0.05 0 10 10
## 3 0.1 0 10 10
## 4 0.15 2 8 10
## 5 ... ... ... ...
## 6 0.85 6 4 10
## 7 0.9 9 1 10
## 8 0.95 10 0 10
## 9 1 10 0 10
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Binomial vs Binary data structure

With a categorical variable we have essentialy a contingency table:
x <- c("a", "b")
nt <- 10
nc <- rbinom(length(x), nt, plogis(qlogis(0.4) + log(odds_ratio(0.7, 0.4))*ifelse(x == "a", 1, 0)))

datc <- data.frame(x, nc, nf = nt - nc, nt)
datc

## x nc nf nt
## 1 a 8 2 10
## 2 b 3 7 10
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Binomial vs Binary: data structure
Clearly, expanding or aggregating data is the way to convert a binary into
a binomial data structure and the opposite:
# from binomial to binary
bin_to_binary(datc, nc, nt) |>

select(y, x) |>
trim_df()

## y x
## 1 1 a
## 2 1 a
## 3 1 a
## 4 1 a
## 5 ... ...
## 6 0 b
## 7 0 b
## 8 0 b
## 9 0 b

# from binary to binomial
bin_to_binary(datc, nc, nt) |>

binary_to_bin(y, x)

## # A tibble: 2 x 4
## x nc nf nt
## <chr> <dbl> <dbl> <int>
## 1 a 8 2 10
## 2 b 3 7 10
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Binomial vs Binary: - fitting function in R

# binary regression
glm(y ~ x, family = binomial(link = "logit"))

# binomial with cbind syntax, nc = number of 1s, nf = number of 0s, nc + nf = nt
glm(cbind(nc, nf) ~ x, family = binomial(link = "logit"))

# binomial with proportions and weights, equivalent to the cbind approach, nt is the total trials
glm(nc/nt ~ x, weights = nt, binomial(link = "logit"))
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Binomial vs Binary: residuals and residual deviance

A more relevant difference is about the residual analysis. The binary
regression has different residuals compared to the binomial model fitted on
the same dataset8.
fit_binomial <- glm(nc/nt ~ x, weights = nt, data = dat_binomial, family = binomial(link = "logit"))
fit_binary <- glm(y ~ x, data = dat_binary, family = binomial(link = "logit"))

8To note, the binned residuals could be considered as an attempt to mitigate the binary
residuals problem by creating bins of fitted/residual values similarly to fitting a binomial model.
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Binomial vs Binary: residuals and residual deviance
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Binomial vs Binary: residuals and residual deviance

The residual deviance is also different. In fact, there is more residual
deviance on the binary compared to the binomial model. However,
comparing two binary and binomial models actually leads to the same
conclusion. In other terms the deviance seems to be on a different scale9:
fit0_binary <- update(fit_binary, . ~ -x) # null binary model
fit0_binomial <- update(fit_binomial, . ~ -x) # null binary model

anova(fit_binomial, fit0_binomial, test = "Chisq")

## Analysis of Deviance Table
##
## Model 1: nc/nt ~ x
## Model 2: nc/nt ~ 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 19 14.817
## 2 20 175.252 -1 -160.44 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fit_binary, fit0_binary, test = "Chisq")

## Analysis of Deviance Table
##
## Model 1: y ~ x
## Model 2: y ~ 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 208 127.94
## 2 209 288.37 -1 -160.44 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9Thanks to Prof. Altoè for this suggestion
143 / 166



Binomial vs Binary: type of predictors #extra

This point is less relevant in this course but important in general. Usually,
binary regression is used when the predictor is at the trial level whereas
binomial regression is used when the predictor is at the participant level.
When both levels are of interests one should use a mixed-effects model
where both levels can be modelled.

• the probability of correct responses during an exam as a function of
the question difficulty

• he probability of passing the exam as a function of the high-school
background
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Binomial vs Binary: type of predictors #extra
The probability of correct responses during an exam as a function
of the question difficulty

• each question (i.e., trial) has a 0/1 response and a difficulty level
• we are modelling a single person

dat <- expand_grid(id = 1, question = 1:30)
dat$y <- rbinom(nrow(dat), 1, 0.7)
dat$difficulty <- sample(1:5, nrow(dat), replace = TRUE)

dat |>
select(id, question, difficulty, y) |>
trim_df()

## id question difficulty y
## 1 1 1 1 1
## 2 1 2 5 1
## 3 1 3 1 0
## 4 1 4 3 1
## 5 ... ... ... ...
## 6 1 27 2 1
## 7 1 28 4 1
## 8 1 29 5 1
## 9 1 30 3 0
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Binomial vs Binary: type of predictors #extra
the probability of passing the exam as a function of the high-school
background

• each “background” has different students that passed or not the exam
(0/1)

## background nc nf nt
## 1 math 22 8 30
## 2 chemistry 14 6 20
## 3 art 6 4 10
## 4 sport 13 7 20

Or the binary version:

## y background nc nf nt
## 1 1 math 22 8 30
## 2 1 math 22 8 30
## 3 1 math 22 8 30
## 4 1 math 22 8 30
## 5 ... ... ... ... ...
## 6 0 sport 13 7 20
## 7 0 sport 13 7 20
## 8 0 sport 13 7 20
## 9 0 sport 13 7 20
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Binomial vs Binary: type of predictors #extra

• To note that despite we can convert between the binary/binomial, the
two models are not always the same. The high-school background
example can be easily modelled either with a binary or binomial model
because the predictor is at the participant level that coincides with
the trial level.

• On the other side, the question difficulty example can only be
modelled using a binary regression because each trial (0/1) has a
different value for the predictor

• To include both predictors or to model multiple participants on the
question difficulty example we need a mixed-effects (or multilevel)
model where both levels togheter with the repeated-measures can be
handled.
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Binomial GLM - ROC analysis #extra

This prediction-based approach can be extended using the logistic
regression to compute the receiver operating characteristic analysis. This
is a more advanced topic but the idea is to use a binomial regression to
make predictions and assess the prediction accuracy. This is commonly
used in machine learning where the model is trained on a set of data trying
to predict a set of new data.
The ROC curve is a tool to assess the performance of a classifier model
(e.g., binomial regression). The idea is to use several different threshold to
create the 0/1 predictions (instead of 0.5 as in the previous slides) and
find the optimal value.
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Binomial GLM - ROC analysis #extra

Let’s use again the 0.5 threshold but computing all the classification
metrics. We can just create a 2x2 table with model-based predictions
(often called confusion matrix):
pi <- ifelse(predict(fit, type = "response") > 0.5, 1, 0)
yi <- fit$y

# confusion matrix
table(pi, yi)

## yi
## pi 0 1
## 0 25 6
## 1 5 14
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Binomial GLM - ROC analysis #extra

There are several metrics to compute in a confusion matrix (see here). To
create a ROC curve we need to calculate the True Positive Rate (TPR,
also called sensitivity) representing the proportion of ̂𝑦 = 1 when 𝑦 = 1
using a specific threshold value and the False Positive Rate (FPR, also
called 1 - specificity) representing one minus the proportion of ̂𝑦 = 1 when
𝑦 = 0. We could use the classify(fit, th = ) function to compute
relevant metrics from a fitted model and a given threshold:
data.frame(classify(fit, 0.5))

## tp tn fp fn tpr tnr fnr fpr
## 1 14 25 5 6 0.7 0.8333333 0.3 0.1666667

150 / 166

https://en.wikipedia.org/wiki/Confusion_matrix


Binomial GLM - ROC analysis #extra
Then simply using the classify() function with multiple thresholds we
can have two vectors of TPRs and FPRs and plotting the ROC curve. The
Area Under the Curve (AUC) ranges between 0 and 1 (more realistically
between 0.5 and 1). The AUC is the ability of the classifier to classify 𝑦
values:
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Section 6

Binomial GLM - Probit link
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Binomial GLM - Probit link

• The mostly used link function when using a binomial GLM is the
logit link. The probit link is another link function that can be used.
The overall approach is the same between logit and probit models.
The only difference is the parameter interpretation (i.e., no odds
ratios) and the specific link function (and the inverse) to use.

• The probit model use the cumulative normal distribution but the
actual difference with a logit functions is neglegible.

153 / 166



Binomial GLM - Probit link
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Binomial GLM - Probit link
When using the probit link the parameters are interpreted as difference in
z-scores associated with a unit increase in the predictors. In fact
probabilities are mapped into z-scores using the comulative normal
distribution.
p1 <- 0.7
p2 <- 0.5

qlogis(c(p1, p2)) # log(odds(p1)), logit link

## [1] 0.8472979 0.0000000

qnorm(c(p1, p2)) # probit link

## [1] 0.5244005 0.0000000

log(odds_ratio(p1, p2)) # ~ beta1, logit link

## [1] 0.8472979

pnorm(p1) - pnorm(p2) # ~beta1, probit link

## [1] 0.06657389
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Binomial GLM - Probit link
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Binomial GLM - Probit link and SDT #extra

One useful reason to use the probit link is when estimating Signal
Detection parameters with a GLM approach [6].
The Signal Detection theory is a statistical approach to evaluate the ability
of subject to discriminate between signal and noise.
In psychology, is used in cognitive-perceptual tasks and psychophysics to
understand how well a participant is able to detect the presence of a
stimulus or sound.
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Binomial GLM - Probit link and SDT #extra
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Binomial GLM - Probit link and SDT #extra
The two main parameters for a signal detection analysis are the d′ and the
criterion. The d′ is the ability to discriminate between signal and noise
(the distance between the two distributions of the previous slide) and the
criterion is the tendency to say yes (liberal) or no (conservative) of the
subject. The core of the SDT analysis is separately estimating the d′ and
the criterion thus the ability to discriminate regardless the actual decision
strategy.

𝑑′ = Φ(𝐻𝐼𝑇 ) − Φ(𝐹𝐴)

𝑐 = Φ(𝐻𝐼𝑇 ) + Φ(𝐹𝐴)
2

Where HIT is the sensitivity defined for the ROC analysis (say signal
present when the signal is actually present) and the FA (false alarms) is 1
- specificity defined for the ROC analysis (say signal present when the
signal is actually absent). 159 / 166



Binomial GLM - Probit link and SDT #extra

The signal detection formalize the problem as a system (e.g., a person)
that take a decision based on a noisy signal. Each decision, the evidence
(i.e., the signal) is compared to an internal criterion. If the perceived
signal exceed the criterion, the person say yes otherwise no.

• the signal distribution is 𝑆𝑖𝑔𝑛𝑎𝑙 ∼ 𝒩(𝑑′, 1)
• the noise distribution is 𝑁𝑜𝑖𝑠𝑒 ∼ 𝒩(0, 1)
• the optimal criterion is the midpoint between signal and noise 𝑑′

2 but a
person could choose a different criterion (e.g., conservative or liberal)
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Binomial GLM - Probit link and SDT #extra

Example: A group of clinicians need to guess the presence of learning
disorders by observing a class of children during a day. Within the class
50% have learning disorders and 50% have no diagnosis.

• HIT: the clinician say yes and the children has a disorder
• FA: the clinician say yes and the childern do not has a disorder

The d′ is the overall ability of a clinician to classify the class and the
criterion is the tendency to say yes or no regardless the reality. We can
use some simulated data with 𝑛 = 100 childern and we want to assess the
ability of the clinician detecting the learning disorder:

## say_disorder has_disorder x
## 1 1 1 0.8011076
## 2 1 1 0.7469740
## 3 1 1 0.6396217
## 4 0 1 0.1796345
## 5 1 1 2.2675028
## 6 1 1 1.3757353
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Binomial GLM - Probit link and SDT #extra

sdt$sdt <- dplyr::case_when(
sdt$say_disorder == 1 & sdt$has_disorder == 1 ~ "hit",
sdt$say_disorder == 0 & sdt$has_disorder == 1 ~ "miss",
sdt$say_disorder == 1 & sdt$has_disorder == 0 ~ "fa",
sdt$say_disorder == 0 & sdt$has_disorder == 0 ~ "cr"

)

sdt_tab <- table(sdt$sdt)
sdt_tab

##
## cr fa hit miss
## 35 15 37 13

hr <- sdt_tab["hit"] / (sdt_tab["hit"] + sdt_tab["miss"])
far <- sdt_tab["fa"] / (sdt_tab["fa"] + sdt_tab["cr"])
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Binomial GLM - Probit link and SDT #extra

We could manually calculate the d′ and criterion:
# dprime
qnorm(hr) - qnorm(far)

## hit
## 1.167746

# criterion, negative = tendency to say yes
-((qnorm(hr) + qnorm(far))/2)

## hit
## -0.05947245
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Binomial GLM - Probit link and SDT #extra

Or fitting a GLM with a probit link predicting the response by the reality:
fit <- glm(say_disorder ~ has_disorder,

# this is for having the same sign as the standard formula
contrasts = list(has_disorder = -contr.sum(2)/2),
data = sdt,
family = binomial(link = "probit"))

# the intercept is the criterion
-coef(fit)[1] # flipping the sign is required

## (Intercept)
## -0.05947245

# the slipe is the dprime
coef(fit)[2]

## has_disorder1
## 1.167746
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