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Introduction

In very general terms, probability could be viewed as a
mesaure of uncertainty related to the occurrence of an event
The theory of probability is the basis for inferential
statistics (both frequentist and bayesian inferential
statistics)
So before moving to bayesian inference, let’s recall the basic
properties of probability

Note. For a more in depth introduction to the theory of probability see:
Etz & Vandekerckhove (2017). Introduction to Bayesian inference for
psychology. Psychonomic Bulletin & Review, 1-30
https://link.springer.com/article/10.3758/s13423-017-1262-3
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Basics: Sample Space, Outcomes and Events

Given a random phenomenon (e.g., a roll of a die), the set
of all possible outcomes (results) is called sample space
(S)
The elements of S must be mutually exclusive and
collectively exhaustive
An event (E) is a subset of S
Example:
Random phenomenon: A roll of a six-sided dice
Sample space: S = {1, 2, 3, 4, 5, 6}
Event: “An even number will come up”, E = {2, 4, 6}
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Discrete and continuous sample spaces

A sample space is called discrete if its elements are
countable:

EXAMPLE
Phenomenon: Number of errors in a task
Sample space: S = {0, 1, 2, 3, . . .}

A sample space is called continuous if its elements are not
countable, but rather they represent a continuum of values

EXAMPLE
Phenomenon: Proportion of fixation time to a stimulus (θ)
Sample space: S = {0 ≤ θ ≤ 1}
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Probability definitions

The first formal approaches to probability theory were
made in the second half of the 17th century (Pascal,
Fermat, Bernoulli).
The first areas of application for probability theory were in
the fields of games of chance and insurance problems.
One first attempt at rigorous formalization was made by
Laplace (1812); other important developments were made
by De Moivre (1667–1754), Gauss (1777–1855) and Poisson
(1781–1840).
From the second half of the 19th century until the 1920s,
important contributions were made by Chebyshev
(1821–1894), Markov (1856–1922), and Lyapunov
(1857–1918).
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Probability definitions

1 Classic (Laplace)
2 Frequentist (Von Mises, Reichebach, Castelnuovo)
3 Subjective (De Finetti, Ramsey, Savage)
4 Axiomatic (Kolmogorov)
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Classical definition

The probability of an event E is the ratio of the number of cases
favorable to its occurrence (s) to the total number of possible cases
(n = |S|), assuming that all outcomes are equally probable.

Formally:
p(E) =

s

|S|
where |S| is the cardinality of the sample space S.

Limitations:

It is not always possible to determine |S|, the total number of
possible outcomes in the sample space, especially for infinite or
very large sample spaces.

The assumption that all possible outcomes are equally probable
does not hold in many real-world scenarios.
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Frequentist definition

The probability of an event E is defined as the value to which the
relative frequency of occurrence of the event tends to converge as the
number of trials approaches infinity

Formally:

p(E) = lim
n→∞

f(E)

n

where f(E) is the number of times event E occurs in n trials.

Limitations:

It is not possible to determine the exact probability, only an
estimate based on observed frequencies.

The reliability of the estimate depends on tests being performed
under consistent conditions; if conditions vary, the estimate may
not be reliable.
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Subjective definition

The subjective definition of probability was developed to
address the limitations of classical and frequentist approaches.
According to this definition:

The probability of an event is the price that an individual
considers fair to pay for a contract that pays:

1 unit of currency if the event occurs
0 if the event does not occur

This definition reflects the degree of belief an individual has in
the occurrence of the event, based on their personal knowledge
and judgment.
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Assiomatic definition

The axiomatic definition of probability is not operational in nature.
Unlike classical or frequentist definitions, it does not provide specific
guidance on how to calculate probabilities. Instead, it establishes a
formal mathematical framework that can accommodate both
objectivist and subjectivist interpretations of probability.

The term ’axiomatic’ refers to the process of axiomatization used in
its development. This process involves:

Identifying primitive (undefined) concepts in probability theory.

Establishing a set of axioms or postulates based on these
concepts. Deriving theorems and properties of probability from
these axioms.

This approach provides a rigorous mathematical foundation for
probability theory, allowing for consistent application across various
fields and interpretations.
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Summarizing

Probability theory serves as a general system for
representing plausibility. It applies both to enumerable
events in the world (by counting the ways in which they
can occur) and to theoretical constructs defined by
parameters (McElreath, 2016).
Probability is a measure of the degree of
uncertainty about the occurrence of an event.
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The probability function

The probability function, Pr(), is a mathematichal function
that assigns numbers to each outcome of a sample space.
The numbers, called probabilities, need to satisfy three
properties (Kolmogorov, 1956):

1 A probability value must be non-negative (i.e., zero or
positive)

2 The sum of the probabilities across all outcomes in the
entire sample space must be 1

3 For any two mutually exclusive events, the probability that
one or the other occurs is the sum of their individual
probabilities
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Probability distribution

A probability distribution is a list of all outcomes of the sample
space and their corresponding probabilities

Example
Phenomenon: X = a single toss of a fair coin; where X is
a random variable that can take the following values: x = 0
(Head) e x = 1 (Tail)
Sample space: S = {0, 1}
Probability distribution: Pr(X = x) = θx(1− θ)1−x

where θ (i.e., the parameter that defines the probability
distribution) is equal to .5
Properties of the probability distribution:
Pr(X = 0) = .5; Pr(X = 1) = .5 ≥ 0
Pr(X = 0) + Pr(X = 1) = 1
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Discrete and continuous probability distributions

A probability distribution associated with a discrete sample
space is called discrete probability distribution or
mass probability function
A probability distribution associated with a continuous
sample space is called continuous probability
distribution or density probability function
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Properties of discrete probability distributions

Let Pr(X = x) be a discrete probability distribution with
sample space S = {X}, then:

0 ≤ Pr(X = x) ≤ 1 ∀x (1)

∑
X

Pr(X = x) = 1 (2)
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Some discrete probability distributions

Name S Param. Mass Mean Variance
Bernoulli x = 0, 1 θ θx(1− θ)1−x θ θ(1− θ)

Binomial x = 0, 1, . . . , n θ

(
n
x

)
θx(1− θ)n−x nθ nθ(1− θ)

Poisson x = 0, 1, 2, . . . λ e−λ λn

n!
λ λ
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Properties of continuous probability distributions

Let Pr(X = x) be a continuous probability distribution with
sample space S = {X}, then:

p(X = x) ≥ 0 ∀x (3)

∫
X
p(X = x)dx = 1 (4)

Note. Probability densities can be greater than 1, whereas probability
masses cannot be greater than 1. In any case, the overall area under the
probability function (i.e. the overall probability associated with the sample
space) is always 1.
. . . try

> curve( dnorm(x,mean=0,sd=.1), from=-.5, to=.5 )
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Some continuous probability distributions

Name S Param. Density Mean Variance

Uniform a ≤ x ≤ b a, b 1
b−a

a+b
2

(b−a)2

12

Normal −∞ ≤ x ≤ +∞ µ, σ 1√
2πσ2

e
− 1

2
(x−µ)2

σ2 µ σ2

Beta 0 ≤ x ≤ 1 a, b
x(a−1)(1−x)(b−1)

B(a,b)
a

a+b
ab

(a+b)2(a+b+1)
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Probability distributions and R

R makes it easy to work with probability distributions
There are four functions available for probability
distributions:

d*: probability mass for discrete distribution and
probability density for continuous distributions
p*: the cumulative probability for a given quantile
q*: the quantile for a given cumulative probability
r*: draw a random sample for a given distribution

Note. * distribution names in R (e.g., Normal: norm)

21 / 49



Introduction Probability distributions Bivariate probability distributions .

Some probability distributions in R

Distribution Type Name
Binomial discrete @binom
Poisson discrete @pois
Uniform continuous @unif
Normal continuous @norm
Student’s t continuous @t
Beta continuous @beta

Note: @ = prefix: d or p or q or r
For example rnorm() draw random samples from a Normal
distribution
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. . . from theory to practice

Let’s practice with some probability distributions:
Poisson
Normal
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Poisson distribution

Suppose that the number of errors committed in a cognitive
task has a Poisson distribution with parameter λ = 3:

Pr(X = x) ∼ P (x;λ), x = 0, 1, 2, 3, 4, 5, . . .
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Graphical representation

> x <- 0:14
> plot( x, dpois( x, lambda = 3), type = "h", ylab = "Pr(x)" )
> points( x, dpois( x, lambda = 3 ), pch = 19 )
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Exercises

What is the probability that a subject makes 4 errors?

> dpois( 4, 3 )

[1] 0.1680314

What is the probability that a subject makes 3 or 4 errors?

> dpois( 3, 3 ) + dpois( 4, 3 )

[1] 0.3920732

What is the probability that a subject makes less than 2 errors?

> ppois( 1, 3 )

[1] 0.1991483

What is the probability that a subject makes more than 2 errors?

> 1 - ppois( 2, 3 )

[1] 0.5768099

What is the probability that a subject makes at least 1 error?

> 1 - ppois( 0, 3 )

[1] 0.9502129
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Drawing random samples

A random samples of 10 performance

> rpois( 10, 3 )

[1] 3 2 5 4 2 6 5 4 5 3

A random samples of 1000000 performance

> large_sample <- rpois( 1e6, 3 )

Sample mean and sample variance

> mean( large_sample )

[1] 3.000185

> var( large_sample )

[1] 3.002194
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Normal distribution

Suppose that the time (in seconds) spent on by a guinea pig to
complete a maze is normally distributed with mean µ = 180 e
standard deviation σ = 40:

p(X = x) ∼ N (x; 180, 40)
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Graphical representation

> curve( dnorm( x, 180, 40 ), from = 180-40*4, to = 180+40*4,
+ ylab = "p(x)" )
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Exercises

1 What is the probability that a randomly selected guinea pig
spends less than 200 seconds to complete the maze?

2 What is the probability that a randomly selected guinea pig
spends between 140 and 220 seconds to complete the maze?

3 Graphically represent 3 normal distributions with a fixed
mean of 180 and a standard deviation of 20, 40, 80
respectively.
Hint: To add different graphs on the same plot use the option
add = TRUE (see, ?curve)
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Bivariate probability distributions

There are many situations in which we are interested in the
conjunction of two (or more) outcomes regarding two(or
more) random variables
For example:

What is the probability of meeting a person with both red
hair and green eyes?
What is the probability that “Linda is a bank teller and is
active in the feminist movement?” (Kahneman e Tversky,
1974)

Bivariate (or multivariate) probability distributions are
used to answer these kinds of questions
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Tossing a fair coin

As an example for developing our new ideas, imagine tossing a
fair coin three times in a row:

Sample_space Probability
HHH 1/8
HHT 1/8
HTH 1/8
HTT 1/8
THH 1/8
THT 1/8
TTH 1/8
TTT 1/8

Note. T = Tail, H = Head
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Let’s now consider two random variables

X = number of heads, where:
SX = {0, 1, 2, 3}

Y = Number of switches between heads and tails, where:
SX = {0, 1, 2}
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Table of the bivariate probability distribution

The bivariate (or conjoint) probability distribution of X and Y :

Pr(X = x, Y = y) = Pr(x, y)

X (nr. of heads)
Y (nr. of switches) 0 1 2 3

0
1
2

The probability of two events happening together is called their conjoint
probability. Example: Pr(X = 1, Y = 2) = 1/8 = .125
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Marginal probability distribution

Marginal probability distributions give us the probability
of obtaining one variable outcome regardless of the value of the
other variable(s).

X (nr. of heads)
Y (nr. of switches) 0 1 2 3 X.

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8
Y. 1/8 3/8 3/8 1/8
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Discrete and continuous marginal distributions

To compute the mariginal probability distribution of X, we
sum Pr(x, y) across all values of y
When the X and Y variables are discrete, we will have:

Pr(x) =
∑
y

Pr(x, y) (probability mass)

When the X and Y variables are continuous, we will have:

p(x) =

∫
y
p(x, y)dy, (probability density)

Note. The process described above is called marginalizing over Y or
integrating out the variable Y .
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Conditional probability

We often want to know the probability of one event, given
that we know another event is true

What is the probability that you will pass the statistics
exam given that you scored 20/30 on the first assignment?
What is the probability of the observed data given that the
Null Hypothesis is true? What is the probability of the Null
Hypothesis being true given the observed data?!

Conditional probabilities are used to answer these kinds of
questions
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Conditional probabilities: The idea

Let’s go back to our example of three coin flips . . .

What is the probability that a sequence of three coin flips
has 1 switch (Y = 1) given that it has 1 head (X = 1)?

Pr(Y = 1|X = 1) =?

(where “|” is read as: “given that”)
Intuitively, we will must consider only the cases in which a
single Head occurs. And then we will have to compare the
probability of obtaining a Switch to the overall probability
of having a single Head
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Conditional probabilities: The calculation

Pr(Y = 1|X = 1) = Pr(Y=1,X=1)
Pr(Y=0,X=1)+Pr(Y=1,X=1)+Pr(Y=2,X=1)

= 2/8
0+2/8+1/8

= 2/8
3/8

= 2
3 = 0.667

Question: Pr(X = 1|Y = 1) = Pr(Y = 1|X = 1)?
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Conditional probabilities: The Formalization

When the X and Y variables are discrete, we will have:

Pr(y|x) = Pr(y, x)∑
y Pr(y, x)

=
Pr(y, x)

Pr(x)

When the X and Y variables are continuous, we will have:

p(y|x) = p(y, x)∫
y p(y, x)dy

=
p(y, x)

p(x)
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Independent probability distributions

Two probability distribution, p(x) and p(y), are said to be
independent if and only if:

p(y|x) = p(y), for each y and x

and equivalently

p(x|y) = p(x), for each x and y
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Fundamental property of independent
distributions

If and only if, the probability distribution of X and Y are
indipendent, we will have:

p(x, y) = p(x)p(y), for each y e x

Exercises:
1 Demonstrate this simple property
2 In our example of the three coin flips, are X e Y

indipendent? Prove it.
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Before bayesian inference . . . remember that

In general: Pr(x|y) ̸= Pr(y|x)
If someone smiles at you, what is the probability that they
love you?
If someone loves you, what is the probability that they will
smile at you?
There is no temporal order in conditional
probabilities
When we say “the probability of x given y” we do not mean
that y has already happened and x has yet to happen. All
we mean is that we are restricting our calculations of
probability to a particular subset of possible events.
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Bonus: Going Bayes

We know that:

Pr(y|x) = Pr(y, x)

Pr(x)
, Pr(x|y) = Pr(y, x)

Pr(y)

Obtain Pr(y, x) from both equations and equalize the results:

Pr(y|x)Pr(x) = Pr(x|y)Pr(y)

Divide both sides of the equation by Pr(x):

Pr(y|x) = Pr(x|y)Pr(y)

Pr(x)
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Bonus: Going Bayes

Now, remembering that Pr(x) =
∑

y Pr(x, y), and knowing
that Pr(x, y) = Pr(x|y)Pr(y)

. . . here we have the
Bayes Theorem:

Pr(y|x) = Pr(x|y)Pr(y)∑
y Pr(x, y)
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