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Intro The binomial model

. . . when you have eliminated the impossible,
whatever remains, however improbable, must be the truth . . .

(Doyle, 1890)

The general principles of Bayesian analysis are easy to
understand.
First, we model uncertainty or degree of belief by using
probability (prior, p(θ)).
Second, we use observed data to update the prior
information or beliefs to become posterior information or
belief, p(θ|D).

(Lee & Wagenmakers, 2013)
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Conditional probabilities

Bayesian statistics are based on Bayes’ principle of
conditional probabilities:

p(θ|D) =
p(D|θ)p(θ)

p(D)

This equation is often verbalized as

posterior =
likelihood × prior

evidence
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Major points

More can be learned about parameter estimates
and model fit.

ML assumes that the distribution of the parameter estimate is
normal.
In contrast, Bayes provides the whole distribution, referred to as
a posterior distribution, not assuming it is normal.
The ML confidence interval assumes a symmetric distribution,
whereas the Bayesian credibility interval allows for a strongly
skewed distribution.
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Major points

Better small-sample performance can be obtained
and large-sample theory is not needed.

This point is illustrated by better Bayesian small-sample
performance for factor analyses prone to Heywood cases and
better performance when a small number of clusters are analyzed
in multilevel models.
This, however, requires a judicious choice of the prior.

van de Schoot, R., & Miocevic, M. (2020). Small Sample Size
Solutions: A Guide for Applied Researchers and Practitioners.
Routledge, London and New York.
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Major points

Analyses can be made less computationally
demanding.

Many models are computationally cumbersome or impossible
using ML, such as with categorical outcomes and many latent
variables resulting in many dimensions of numerical integration.
Such an analyst may view the Bayesian analysis simply as a
computational tool for getting estimates that are analogous to
what would have been obtained by ML had it been feasible.
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Major points

New types of models can be analyzed.
For example models with a very large number of parameters or
where ML does not provide a natural approach.
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Frequentist approach

In the traditional frequentist approach to statistical
inference, the probability of an event is interpreted as the
relative frequency of an event given an infinite sequence of
samples from an identical (i.e. fixed) probability
distribution.
In the frequentist approach the model parameters are
assumed as fixed, e.g. in the form of a Null-Hypothesis that
fixes θ = 0.
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Bayesian inference

In contrast, the Bayesian approach focuses directly on the
probability of an effect, i.e. on the probability of observing
the estimated parameters given the data, i.e. on p(θ|D).
Further, in addition to the sampling uncertainty of data,
the Bayesian approach also treats the model parameters as
uncertain, i.e. assumed as following a probability
distribution, namely the prior distribution p(θ).
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Example
Let us consider a sample of subjects for whom there is a suspicion of a
cognitive deficit and µ = 90 indicates the average value of the score for
normal subjects in a specific test measuring cognitive abilities.

NHST approach:{
H0 : µ = 90
H1 : µ < 90

Bayes approach:

µ ∼ N (90, τ)

With Bayesian way it’s possible, for example, to estimate P (µ < 90)
while in NHST this probability can be only 0 (H1 is false) or 1 (H1 is
true).
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prior

70 78 86 94 102 110
µ
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Example
An ornithologist wants to estimate the
proportion (θ) of male kiwi in a
specified area of the NZ.
Without any prior information, any
proportion could be equally plausible.
He observes a sample of 9 animals in
the following sequence:

F, F, F, F,M,F,M,F, F

2 are male and 7 female.
After observing these data, what can
he think?
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Model of observations

We can make the following assumptions about the sampling
process:

1 The true proportion of male individuals is θ
2 By randomly pulling out an individual this will be male

(with probability θ) or female (with probability 1-θ)
3 The outcome (male or female) of any observation is

independent of the outcome of any other observation

This collection of assumptions about the kiwi sampling
process is our model of the observations.
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Model of observations

The model of observations is the model that describes
the probabilities of observable events.

We can have a formula that describes the probability that
an observed animal will be male.
Or a formula that tells us what is the probability of
observing k male on n animals.
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Model of beliefs

We could made a second set of assumptions about our
beliefs regarding the proportion of males.
For example, assuming that we believe most strongly in the
proportion being close to 50%, but we also allowing for the
possibility that the proportion could be different.
Thus, we have a set of assumptions about how likely it is
for the proportion to be 50% or to be another value to
different amounts.
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Model of beliefs

The model of beliefs describe the extent to which we
believe in various underlying possibilities.

e.g. we can have a formula that describes how much we
believe in each possible proportion of males.
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Priors and Posteriors

We define Priors all the beliefs that we have before
collecting any kind of information.
We define Posteriors all beliefs that take into account a
particular set of information collected.

For example:

Before observing a kiwi we assume to have a probability of 50%
that it is male.

After observing the animals of our sample we change our belief
because the result of 2 males (out of 9 individuals observed) can
lead us to reduce the probability that we assign to the fact that
the number of males and females is equal.
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Priors and Posteriors

Before observing animals, we
assume that any θ value is
equally plausible.

0.00 0.25 0.50 0.75 1.00
θ (proportion of males)

After observing the first animal
(F) we change the plausibility
associated with θ values.

0.00 0.25 0.50 0.75 1.00
θ (proportion of males)
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Priors and Posteriors

0.00 0.25 0.50 0.75 1.00
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Goals for bayesian inference

When we make observation of data, we typically have one of
these three goals in mind (like in the frequentist approach):

1 Estimation of Parameter Values.
2 Prediction of Data Values.
3 Model Comparison.
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Estimation of Parameter Values

It means deciding the extent to which we should believe in
each of the possible values of an underlying parameter.
Let θ be true (unknown) value of males proportion in the
kiwi-observation scenario.
Because the observation of an animal is a random process,
we cannot be certain of the underlying true proportion of
males; so our posterior beliefs are an estimate.
The process of shifting our beliefs in various parameter
values is called estimation of parameter values.
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Prediction of Data Values

Based on our beliefs, i.e. the probability of a male, we may
predict other values: for example the outcome of a new
observation or the number of males in ten animals.
Prediction simply means inferring the values of some
missing data based on some other included data, regardless
of the actual temporal relationship of the included and
missing data.
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Model Comparison

If we have two different models of how something happens,
then an observation of what really does happen can
influence which model we believe in most.
For example, suppose we have two different models for the
male/female proportion. One model assumes that the
proportion of males could be 20%, 50% or 80%. The second
model assumes that the proportion is either a perfectly
balanced proportion or else a gender is completely missing:
0%, 50% or 100%.
After observing 2 males out of 9 animals, which model do
we believe in more? The mathematics of Bayesian inference
can tell exactly how much more to believe in the
first model than in the second.
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Result of a Bayesian Analysis

The work of a bayesian model is to produce the posterior
distribution by sampling1.
After having produced the posterior, our work will consist
in summarizing and interpreting this distribution.
Depending on our goals, we can have various ways to
summarize the posterior: (1) point estimates, (2) intervals
based on defined boundaries, (3) intervals based on defined
probability densities.

1
This does not exclude particular, generally simpler cases where posterior distribution is

analytically defined.
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Point estimates

0

2

4

6

0.0 0.1 0.2 0.3 0.4
θ

P
(θ
|D

)

Let’s consider three alternative
point estimates:

the maximum a posteriori,
MAP = 0.178
the posterior mean: 0.191
the posterior median: 0.187

Problem:
If the distribution is far
from symmetry these
measures will tend to be
different.
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Intervals based on quantiles
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We can use a quantile-based
interval, for example the
classicals 2.5% and 97.5%.

Problem:
If the distribution is
skewed we will have within
the interval less likely
values than those outside
the interval.
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HPD intervals
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This is an interval [l(y), u(y)]
such that:

Pr[l(y) < θ < u(y)|D] = 1− α

i.e. the probability that
l(y) < θ < u(y) after observing
data.
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From Bernoulli to binomial model

When we observe an animal, the result can be a male (M)
or a female (F).
We will denote the result by y, with y = 1 for M and y = 0
for F.
Let θ be the probability of M:

{
p(y = 1|θ) = θ
p(y = 0|θ) = 1− θ

28 / 50
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Bernoulli

The two equations can be combined into a single
expressions as follows:

p(y|θ) = θy(1− θ)(1−y)

which expresses the Bernoulli distribution with y ∈ {0, 1}
and θ ∈ [0, 1].
This distribution represents the probability to obtain 0 or 1
given fixed θ.
If, for example, θ = {0, 0.25, 0.5, 0.75, 1}, we will obtain 5
different probability distributions.
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Bernoulli mass function
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0 1 0 1 0 1 0 1 0 1

0.00

0.25

0.50

0.75

1.00

y

p
(y
|θ
)

30 / 50



Intro The binomial model

Bernoulli likelihood

Contrariwise, by fixing y and varying θ we obtain the
likelihood function.

y = 0 y = 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.00
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0.50

0.75

1.00

θ

p
(y
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)
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Important points:
The same function p(y|θ) can be two different things: a
Bernoulli distribution or a likelihood function.

The Bernoulli is a discrete distribution: it give us the
probability of y given fixed θ.
The likelihood is a continuous function: it specifies a
probability at each value of θ given y, but is not a
probability distribution.
In the NHST approach we consider only θ values under H0.
In the bayesian approach, θ is considered and treated as a
random variable.
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Binomial model

When we observe N animals, we have a set of data,
D = {y1, . . . , yN}, where each yi is 0 (F) or 1 (M).
By assuming each observation as independent from the
others, the probability of getting the set of N animals D is
the product of the individual outcome probabilities:

p({y1, . . . , yN}) =

∏
i

p(yi|θ) =
∏
i

θyi(1− θ)(1−yi)

If the numbers of males in the set of animals is denoted
z =

∑N
i yithen we can write:

p(z,N |θ) = θz(1− θ)(N−z)
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Prior definition

Let us suppose to be
interested in assessing
whether proportion
male/female is quite similar.

First, we specify our prior
beliefs.

We denote the proportion of
males as θ = p(M).

Suppose that we believe there
are only 3 possible values for
this proportion:
θ = 0.25, 0.5, 0.75.

0.0

0.1

0.2

0.3

0.4

0.5

0.25 0.5 0.75
θ

p
(θ
)

prior
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Likelihood definition

Next, we observe a sample of
animals to get some data D
and determine the likelihood
p(D|θ).

Suppose we observe 9 animals
and it comes up 2 M and 7 F.

Consequently:

p(D|θ) = θ2(1− θ)7

0.000

0.002

0.004

0.006

0.008

0.25 0.5 0.75
θ

p
(D

|θ
)

likelihood
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Posterior computing

For computing the posterior
distribution we use the Bayes’
rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)

In the binomial case the
computation of p(D) is quite
easy:

p(D) =
∑
θ

p(D|θ)p(θ)

0.0

0.2

0.4

0.6
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θ

p
(θ
|D

)

posterior
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posterior

likelihood

prior
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theta <- c(.25,.5,.75) # parameter values
(prior <- pmin(theta,1-theta)) # prior distribution

[1] 0.25 0.50 0.25

data <- c(1,1,rep(0,7)) # observed data
n <- length(data)
males <- sum(data) # number of males
(like <- theta^males*(1-theta)^(n-males)) # likelihood

[1] 8.342743e-03 1.953125e-03 3.433228e-05

pData <- sum(prior*like)
(post <- prior*like/pData) # posterior distribution

[1] 0.679192547 0.318012422 0.002795031
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The logic of Bayesian analysis:
Similarly, we can define other priors, or we could use the
obtained posterior as a new prior and then collect other
data.
The main objective of the analysis is to obtain the posterior
distribution.
Given the posterior distribution, we can proceed depending
on our final goal: parameter estimation, prediction or
model comparison.



Intro The binomial model

Prior definition

Actually, the proportion is a continuous variable, so it is
better to model our prior beliefs with a continuous
distribution.
All we know, before observing the animals, is that the
proportion of males will certainly be in the [0,1] range.
Consequently, in order to formalise our prior hypothesis we
need an appropriate probability distribution.
Any idea?
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Uniform Prior
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Beta Prior

The Uniform distribution is actually a special case of the
Beta distribution.
The Beta is a continuous density distribution ranging from
0 to 1 and is therefore suitable for dealing with proportions
or parameters that fall within this range.
This distribution is defined as

f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

and can easily be used to formalise hypotheses about the
binomial case.
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Assuming that we know
nothing about the
proportion of males
(maximum uncertainty),
how many males can we
expect to see when
observing two birds at
random?
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1.050

0.00 0.25 0.50 0.75 1.00

Beta( 1, 1 )
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Assuming that we believe
that the proportion of
males is about 50%, how
many males can we expect
to see when observing 20
birds at random?
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Assuming that we
strongly believe that the
proportion of males is
about 50%, how many
males can we expect to
see when observing 1000
birds at random?
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Beta distribution
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Binomial inference

Returning to the kiwi example, we want to estimate the
proportion of males in the population (θ) after observing 2
males and 7 females (D):

The prior will be p(θ) = Beta(1, 1)

The likelihood will be p(D|θ) = θ2(1− θ)7

Using Bayes’ theorem, the posterior will be

p(θ|D) =
p(θ)× p(D|θ)

p(D)

The interesting thing is that the posterior distribution will again
be a Beta distribution with parameters a = 1 + 2 and b = 1 + 7,
Beta(3, 8).
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posterior: beta(3, 8)
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prior: beta(1, 1)
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