library(ggplot2)library(tidyr)library(dplyr)library(purrr)dat <- iris# functionsremove_rownames <-function(x){rownames(x) <-NULL x}sum_lm <-function(x, conf.level =0.95){ xs <-data.frame(summary(x)$coefficients) xs$param <-rownames(xs)rownames(xs) <-NULLnames(xs) <-c("b", "se", "t", "pval", "param") cc <-data.frame(confint(x, level = conf.level))names(cc) <-c("ci.lb", "ci.ub")rownames(cc) <-NULLcbind( xs[, c("param", "b", "se", "t", "pval")], cc )}# fit a linear model for each Speciesdatl <-split(dat, dat$Species)fitl <-lapply(datl, function(d) lm(Sepal.Length ~ Petal.Width + Petal.Length, data = d))resl <-lapply(fitl, sum_lm)res_by_species <-do.call(rbind, resl)res_by_species <-remove_rownames(res_by_species)res_by_species$species <-rep(names(resl), sapply(resl, nrow))ggplot(res_by_species, aes(x = param, y = b, ymin = ci.lb, ymax = ci.ub,color = species)) +geom_pointrange(position =position_dodge(width =0.5))
# alternative version using other packagesresl <-lapply(fitl, broom::tidy, conf.int =TRUE)res_by_species <- dplyr::bind_rows(resl, .id ="species")res_by_species