library(tidyverse)
Psicometria per le Neuroscienze Cognitive
GPT summaries of R4DS Books
Filippo Gambarota, PhD
You can represent the same underlying data in multiple ways. The example below shows the same data organized in three different ways. Each dataset shows the same values of four variables: country, year, population, and number of documented cases of TB (tuberculosis), but each dataset organizes the values in a different way.
# A tibble: 6 × 4
country year cases population
<chr> <dbl> <dbl> <dbl>
1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583
# A tibble: 12 × 4
country year type count
<chr> <dbl> <chr> <dbl>
1 Afghanistan 1999 cases 745
2 Afghanistan 1999 population 19987071
3 Afghanistan 2000 cases 2666
4 Afghanistan 2000 population 20595360
5 Brazil 1999 cases 37737
6 Brazil 1999 population 172006362
7 Brazil 2000 cases 80488
8 Brazil 2000 population 174504898
9 China 1999 cases 212258
10 China 1999 population 1272915272
11 China 2000 cases 213766
12 China 2000 population 1280428583
# A tibble: 6 × 3
country year rate
<chr> <dbl> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583
dplyr, ggplot2, and all the other packages in the tidyverse but also most of the modelling packages (lme4
, brms
, etc.) are designed to work with tidy data.
# Compute rate per 10,000
table1 |>
mutate(rate = cases / population * 10000)
# Compute total cases per year
table1 |>
group_by(year) |>
summarize(total_cases = sum(cases))
# Visualize changes over time
ggplot(table1, aes(x = year, y = cases)) +
geom_line(aes(group = country), color = "grey50") +
geom_point(aes(color = country, shape = country)) +
scale_x_continuous(breaks = c(1999, 2000)) # x-axis breaks at 1999 and 2000
The billboard
dataset records the billboard rank of songs in the year 2000:
# A tibble: 317 × 79
artist track date.entered wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8
<chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 Pac Baby… 2000-02-26 87 82 72 77 87 94 99 NA
2 2Ge+her The … 2000-09-02 91 87 92 NA NA NA NA NA
3 3 Doors D… Kryp… 2000-04-08 81 70 68 67 66 57 54 53
4 3 Doors D… Loser 2000-10-21 76 76 72 69 67 65 55 59
5 504 Boyz Wobb… 2000-04-15 57 34 25 17 17 31 36 49
6 98^0 Give… 2000-08-19 51 39 34 26 26 19 2 2
7 A*Teens Danc… 2000-07-08 97 97 96 95 100 NA NA NA
8 Aaliyah I Do… 2000-01-29 84 62 51 41 38 35 35 38
9 Aaliyah Try … 2000-03-18 59 53 38 28 21 18 16 14
10 Adams, Yo… Open… 2000-08-26 76 76 74 69 68 67 61 58
# ℹ 307 more rows
# ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
# wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
# wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
# wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
# wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
# wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>, …
In this dataset, each observation is a song. The first three columns (artist
, track
and date.entered
) are variables that describe the song. Then we have 76 columns (wk1
-wk76
) that describe the rank of the song in each week.
# A tibble: 24,092 × 5
artist track date.entered week rank
<chr> <chr> <date> <chr> <dbl>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
8 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk8 NA
9 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk9 NA
10 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk10 NA
# ℹ 24,082 more rows
billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
)
# A tibble: 5,307 × 5
artist track date.entered week rank
<chr> <chr> <date> <chr> <dbl>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
8 2Ge+her The Hardest Part Of ... 2000-09-02 wk1 91
9 2Ge+her The Hardest Part Of ... 2000-09-02 wk2 87
10 2Ge+her The Hardest Part Of ... 2000-09-02 wk3 92
# ℹ 5,297 more rows
billboard_longer <- billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
) |>
mutate(
week = parse_number(week)
)
billboard_longer
# A tibble: 5,307 × 5
artist track date.entered week rank
<chr> <chr> <date> <dbl> <dbl>
1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87
2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82
3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72
4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77
5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87
6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94
7 2 Pac Baby Don't Cry (Keep... 2000-02-26 7 99
8 2Ge+her The Hardest Part Of ... 2000-09-02 1 91
9 2Ge+her The Hardest Part Of ... 2000-09-02 2 87
10 2Ge+her The Hardest Part Of ... 2000-09-02 3 92
# ℹ 5,297 more rows
# A tibble: 6 × 2
measure_cd measure_title
<chr> <chr>
1 CAHPS_GRP_1 CAHPS for MIPS SSM: Getting Timely Care, Appointments, and Infor…
2 CAHPS_GRP_2 CAHPS for MIPS SSM: How Well Providers Communicate
3 CAHPS_GRP_3 CAHPS for MIPS SSM: Patient's Rating of Provider
4 CAHPS_GRP_5 CAHPS for MIPS SSM: Health Promotion and Education
5 CAHPS_GRP_8 CAHPS for MIPS SSM: Courteous and Helpful Office Staff
6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources
# A tibble: 500 × 9
org_pac_id org_nm measure_title CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3
<chr> <chr> <chr> <dbl> <dbl> <dbl>
1 0446157747 USC CARE MEDICA… CAHPS for MI… 63 NA NA
2 0446157747 USC CARE MEDICA… CAHPS for MI… NA 87 NA
3 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA 86
4 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
5 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
6 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
7 0446162697 ASSOCIATION OF … CAHPS for MI… 59 NA NA
8 0446162697 ASSOCIATION OF … CAHPS for MI… NA 85 NA
9 0446162697 ASSOCIATION OF … CAHPS for MI… NA NA 83
10 0446162697 ASSOCIATION OF … CAHPS for MI… NA NA NA
# ℹ 490 more rows
# ℹ 3 more variables: CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>
cms_patient_experience |>
pivot_wider(
id_cols = starts_with("org"),
names_from = measure_cd,
values_from = prf_rate
)
# A tibble: 95 × 8
org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5 CAHPS_GRP_8
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0446157747 USC C… 63 87 86 57 85
2 0446162697 ASSOC… 59 85 83 63 88
3 0547164295 BEAVE… 49 NA 75 44 73
4 0749333730 CAPE … 67 84 85 65 82
5 0840104360 ALLIA… 66 87 87 64 87
6 0840109864 REX H… 73 87 84 67 91
7 0840513552 SCL H… 58 83 76 58 78
8 0941545784 GRITM… 46 86 81 54 NA
9 1052612785 COMMU… 65 84 80 58 87
10 1254237779 OUR L… 61 NA NA 65 NA
# ℹ 85 more rows
# ℹ 1 more variable: CAHPS_GRP_12 <dbl>