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It is very common to find meta-analyses in which some of the studies compare 2
groups on continuous dependent variables and others compare groups on dichoto-
mized variables. Integrating all of them in a meta-analysis requires an effect-size
index in the same metric that can be applied to both types of outcomes. In this
article, the performance in terms of bias and sampling variance of 7 different
effect-size indices for estimating the population standardized mean difference from
a 2 × 2 table is examined by Monte Carlo simulation, assuming normal and
nonnormal distributions. The results show good performance for 2 indices, one
based on the probit transformation and the other based on the logistic distribution.

In the last 20 years, meta-analysis has become a
very popular and useful research methodology to in-
tegrate the results of a set of empirical studies about a
given topic. To carry out a meta-analysis an effect-
size index has to be selected to translate the results of
every study into a common metric.

When the focus of a study is to compare the per-
formance of two groups (e.g., treated vs. control, male
vs. female, trained vs. nontrained) on a continuous
dependent variable, the effect-size index most usually
applied is the standardized mean difference, d, de-
fined as the difference between the means of the two
groups divided by a within-group standard deviation
estimate. Substantial meta-analytic literature has been

devoted to showing the properties of this index, its
sampling variance, how to obtain confidence intervals
on the weighted mean effect size obtained from it, its
statistical significance, homogeneity tests, and how to
search for variables that moderate it (Cooper, 1998;
Cooper & Hedges, 1994; Hedges & Olkin, 1985; Lip-
sey & Wilson, 2001; Rosenthal, 1991).

However, in social and behavioral research it is
also very common to find studies using dichotomous
outcome measures or continuous variables that have
been dichotomized. Here we focus on dichotomized
variables, that is to say, variables that represent con-
structs continuous in nature, although being measured
as a dichotomy. This definition includes studies in
which the researchers apply a cutpoint, Yc, on a quan-
titative variable, as well as those in which they di-
rectly measure the dependent variable as a dichotomy
although there is an underlying continuous construct.
For many outcome measures, this is a reasonable as-
sumption. For example, studies about the effective-
ness of the treatment of tobacco addiction can mea-
sure the results as the number of cigarettes smoked in
a day or as a dichotomy (tobacco abstinence vs. non-
abstinence). In the field of delinquency treatment,
studies can record recidivism into crime as a di-
chotomy (recidivist vs. nonrecidivist) or, for example,
as the number of police contacts after prison release.
In education, the performance of students on an exam
can be measured continuously as the number of points
scored or dichotomously as passing versus failing the
exam.
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In these cases, the study results can be summarized
as a 2 × 2 contingency table, where two groups are
crossed with the two outcomes, giving four possible
cell frequencies, as shown in Table 1. With nE and nC

being the sample sizes, O1E and O1C being the success
frequencies, and pE � O1E/nE and pC � O1C/nC being
the success proportions in the experimental and con-
trol groups, respectively, different effect-size indices
have been proposed to represent the effect magnitude
(Fleiss, 1981, 1994; Laird & Mosteller, 1990; Lipsey
& Wilson, 2001; Rosenthal, 1994, 2000; Shadish &
Haddock, 1994). The first purpose of the present ar-
ticle is to explore the properties of these indices.

Three effect-size indices have been applied often:
(a) the risk difference, pE − pC, the raw difference
between the two success (or failure) proportions; (b)
the risk ratio, pE/pC, the ratio between the two pro-
portions, and (c) the odds ratio, pE(1 − pC)/pC(1 − pE),
the relative odds that one will be more successful than
the other. Of the three indices, the odds ratio is the
best one for most situations because of its good sta-
tistical properties (Fleiss, 1994; Haddock, Rindskopf,
& Shadish, 1998), although risk difference and risk
ratio can also be good alternatives under certain con-
ditions (Deeks & Altman, 2001; Hasselblad, Mo-
steller, et al., 1995; Sánchez-Meca & Marı́n-Martı́nez,
2000, 2001). In particular, these three indices have
been applied in meta-analyses in the health sciences,
because in this field it is very common to find re-
search issues in which the outcome is always mea-
sured as a dichotomous (or dichotomized) variable.

More commonly, some of the studies in a meta-
analysis present results comparing the performance of
two groups on continuous outcome variables, other
studies present them on dichotomized variables, and
some studies include both continuous and dichoto-

mized variables. In these cases, if some effect-size
indices are computed as d, and others as an odds ratio,
risk ratio, or risk difference, some means of convert-
ing all these diverse indices to a common effect size
is necessary to integrate all the results into a single
average effect size. Consequently, a second purpose
of the present article is to evaluate different methods
for converting different effect-size indices into the d
metric.1

These cases are often handled in one of the follow-
ing ways. A dichotomous version of the standardized
mean difference that has been commonly applied con-
sists of calculating the difference between success (or
failure) proportions in experimental and control
groups and dividing it by an estimate of within-group
standard deviation (Fleiss, 1981); this index could be
named the standardized proportion difference, dp, and
in many cases it underestimates the population stan-
dardized mean difference (Fleiss, 1994; Haddock et
al., 1998).

Another strategy consists of computing the phi co-
efficient, �, from each one of the 2 × 2 tables and
sometimes also transforming it into a standardized
mean difference, d�, by means of the typical r to d
translation formulas (e.g., Hedges & Olkin, 1985;
Rosenthal, 1991). In this case, phi coefficients also
underestimate the population correlation coefficient
and, therefore, d� indices would also underestimate
the meta-analytic results (Fleiss, 1994; Haddock et al.,
1998). Conversely, some meta-analysts transform ev-

1 Whitehead, Bailey, and Elbourne (1999) proposed an-
other strategy consisting of estimating the log odds ratio in
each study with continuous measures assuming normal (or
log-normal) distributions. The method requires a cutpoint,
Yc, for obtaining the standard normal (or log-normal) dis-
tribution function for experimental and control groups, pE

and pC, in every study. Then, the log odds ratio estimates so
obtained can be quantitatively integrated with the log odds
ratios obtained from the dichotomous outcomes. This strat-
egy is especially useful when all of the studies with con-
tinuous outcomes included in the meta-analysis have used
the same scale, allowing the same cutpoint to be applied in
all of the studies. However, when the different studies have
used different measures and scales, it would be difficult
(and arbitrary) to define the cutpoints needed for estimating
the log odds ratios. Another problem in this strategy is the
loss of information produced in the process of dichotomiz-
ing variables (Dominici & Parmigiani, 2000). Therefore,
provided that meta-analyses in educational and behavioral
sciences routinely include different measures and scales of
the same construct, this strategy is not practical.

Table 1
Contingency 2 × 2 Table for Two Groups and a
Dichotomized Outcome

Outcome

Group

TotalExperimental Control

Success (Yi � Yc) OlE O1C ml

Failure (Yi < Yc) O2E O2C m2

Total nE nC N

Note. Yi � the continuous outcome variable; Yc � the cutpoint
applied for dichotomizing the dependent variable, Y; O1E and
O1C � the success frequencies of the experimental and control
groups, respectively; O2E and O2C � the failure frequencies of the
experimental and control groups, respectively; m1 � O1E + O1C;
m2 � O2E + O2C; nE and nC � the sample sizes for experimental
and control groups, respectively. N � nE + nC.

SPECIAL SECTION: EFFECT-SIZE INDICES 449

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e 
A

m
er

ic
an

 P
sy

ch
ol

og
ic

al
 A

ss
oc

ia
tio

n 
or

 o
ne

 o
f i

ts
 a

lli
ed

 p
ub

lis
he

rs
.  

Th
is

 a
rti

cl
e 

is
 in

te
nd

ed
 so

le
ly

 fo
r t

he
 p

er
so

na
l u

se
 o

f t
he

 in
di

vi
du

al
 u

se
r a

nd
 is

 n
ot

 to
 b

e 
di

ss
em

in
at

ed
 b

ro
ad

ly
.



ery standardized mean difference, d, obtained from
studies with continuous outcome variables into the
Pearson correlation coefficient, r, and then integrate
them with phi coefficients obtained from studies with
2 × 2 tables. This will also underestimate the popu-
lation correlation coefficient.

Only recently have the problems of the phi coeffi-
cient and standardized-proportion-difference statistics
applied to 2 × 2 tables been discussed in the social and
behavioral sciences (Fleiss, 1994; Haddock et al.,
1998; Lipsey & Wilson, 2001). Currently, several al-
ternative strategies better than those involving dp and
d� indices can be applied to transform different effect-
size indices into the d metric. One of the strategies is
the correction of the attenuation in the dp and d� in-
dices that arises because of the dichotomization of the
underlying continuous variable (Becker & Thorndike,
1988; Hunter & Schmidt, 1990; Lipsey & Wilson,
2001). Other strategies are based on the assumption of
the logistic distribution or on the arcsine transforma-
tion. In this article we compare the performance of
seven translation formulas that put a variety of indices
on the d scale.

A third question addressed in this article is that of
the sampling variance of the effect-size indices. In
meta-analysis, such sampling variances are important
because the meta-analytic statistical models usually
weight each effect size by its inverse variance. When
the dependent variable is dichotomized, a loss of in-
formation is produced that affects the accuracy of the
effect size. The formulas derived from statistical
theory for estimating the sampling variance of each
effect-size index have to reflect the cost of dichoto-
mization in terms of accuracy. Therefore, it is ex-
pected that the sampling variances of the transformed
indices will be larger than that of the standardized
mean difference, d.

In summary, then, this article uses Monte Carlo
simulation to examine the performance of seven dif-
ferent strategies for obtaining a d index when the
dependent variable has been dichotomized. On the
basis of past research, the normal distribution is the
most usual assumption for data in the empirical stud-
ies; so we compared the bias and the sampling vari-
ance of the different effect-size indices assuming that
the two populations are normally distributed. To
check the robustness of these effect estimators, we
have also included several conditions representing
nonnormal distributions. Several factors in the simu-
lation were manipulated: the population standardized
mean difference, �, the value of the cutpoint, Yc, to

dichotomize the distributions, the sample size, the im-
balance between sample sizes, and the relationship
between sample sizes and success proportions. It was
expected that dp and d� would underestimate the
population standardized mean difference, that the re-
maining indices would offer a better performance, and
that indices based on normal distributions would pre-
sent the best results when normality is assumed. In
any case, the influence of varying all of these factors
on the performance of these effect-size indices is a
question that has not been yet studied.

Effect-Size Indices for Summarizing
2 × 2 Tables

We assume that the population contains two con-
tinuous distributions (those of experimental and con-
trol groups) with �E and �C as experimental and con-
trol population means, respectively, with � being the
common population standard deviation. Thus, the
parametric effect size between experimental and con-
trol groups is defined as the standardized mean dif-
ference, �, and is computed as

� =
�E − �C

�
(1)

(Hedges & Olkin, 1985, Equation 2, p. 76).
We assume that the continuous variable is normally

distributed for experimental and control groups [YiE ∼
N(�E, �2); YiC ∼ N(�C, �2)]. When in a single study
the outcome variable has been measured continu-
ously, the parametric effect size, �, can be estimated
by means of the sample standardized mean difference,
g, computed by

g =
yE − yC

S
(2)

(Hedges & Olkin, 1985, Equation 3, p. 78), with yE

and yC being the sample means of the experimental
and control groups, and S being a pooled estimate of
the within-group standard deviation, given by

S =��nE − 1�SE
2 + �nC − 1�SC

2

nE + nC − 2
(3)

(Hedges & Olkin, 1985, p. 79), with S2
E and S2

C being
the sample variances of the experimental and control
groups, respectively. To correct the positive bias of
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the standardized mean difference for small sample
sizes, the correction factor proposed in Hedges and
Olkin (1985, Equation 10, p. 81) would be applied to
the g index to obtain an unbiased estimate, d, of �:

d = c�m�g, (4)

where c(m) is the correction factor and is obtained by

c�m� = 1 −
3

4m − 1
, (5)

with m = nE + nC − 2. The sampling variance of the d
index is estimated by

Sd
2 =

nE + nC

nEnC
+

d2

2�nE + nC�
(6)

(Hedges & Olkin, Equation 15, p. 86).
In the case of studies with 2 × 2 tables, it is

supposed that the continuous outcome variable has
been dichotomized by applying some cutpoint, Yc, to
the two original continuous populations, to classify
the subjects of the two populations into success or
failure categories. Two extensions of the standardized
mean difference d have been applied to studies with
such 2 × 2 tables: the standardized proportion differ-
ences, dp, obtained from success (or failure) propor-
tions, and the phi coefficient. The former is defined as
the difference between success (or failure) propor-
tions in experimental and control groups (pE and pC,
respectively), divided by an estimate of the within-
group standard deviation, S�. This index, dp, is com-
puted as

dp =
pE − pC

S�
(7)

(Johnson, 1989, p. 150; Johnson & Eagly, 2000, p.
511), where S� is given as

S� =��nE − 1�pE�1 − pE� + �nC − 1�pC�1 − pC�

nE + nC − 2
(8)

As Haddock et al. (1998) stated, and as shown in
our simulation study, dp underestimates the effect in
the population, �, whenever the marginals are not pro-
portional. The usual estimate of its sampling variance,
Sdp

2 , is obtained by

Sdp

2 =
nE + nC

nEnC
+

dp
2

2�nE + nC�
. (9)

The phi coefficient � is the other effect-size index
usually applied to 2 × 2 tables. It is computed as

� =
O1EO2C − O2EO1C

�nEnCm1m2

(10)

(e.g., Fleiss, 1994, Equation 17-11, p. 249), with all of
the terms in the equation defined in Table 1. Phi can
be translated to the metric of the standardized mean
difference, d�, by

d� =
�

�1 − �2
�df�nE + nC�

nEnC
(11)

(Rosenthal, 1994, Equation 16-29, p. 239), with df �
nE + nC − 2.

The phi coefficient and, consequently, d� underes-
timate the parametric effect size (Haddock et al.,
1998). The sampling variance of d� can be ap-
proached by applying the delta method (Stuart & Ord,
1994, p. 350) to Equation 11:

Sd�

2 =
nE + nC

nEnC�1 − �2�2. (12)

Cohen (1988, p. 181) proposed the arcsine transla-
tion of the success proportion in a 2 × 2 table, pE and
pC, for obtaining an effect size in the d metric:

dasin = 2arcsine�pE − 2arcsine�pC. (13)

Following Lipsey and Wilson (2001, p. 56), we
expected that dasin would underestimate the popula-
tion effect size, unless the population distributions
were very skew. The sampling variance of dasin is
approximated by

Sdasin

2 =
1

nE
+

1

nC
. (14)

(Rosenthal, 1994, p. 238).
A fourth index is based on the odds ratio. Assuming

logistic distributions and homogeneous variances,
Hasselblad and Hedges (1995, Equation 5, p. 170; see
also Chinn, 2000) proposed transforming the log odds
ratio into d by

dHH = LOR

�3

�
, (15)
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where � � 3.14159, LOR is the natural logarithm of
the odds ratio (OR); the odds ratio is easily obtained
from the 2 × 2 table by

OR =
pE �1 − pC�

pC �1 − pE�
(16)

(e.g., Shadish & Haddock, 1994, Equation 18-11, p.
269), with the precaution of adding 0.5 to all cell
frequencies when any of them is 0. Under these as-
sumptions, the log odds ratio is just the constant �/√3
� 1.81 multiplied by the standardized mean differ-
ence, d. Therefore, the dHH index is obtained dividing
the log odds ratio by the constant 1.81, which is also
the standard deviation of the logistic distribution. Ap-
plying the dHH index under the normal distribution
assumption probably will slightly underestimate the
population standardized mean difference, �.

If each of the two continuous populations follows a
logistic distribution with equal variances, the dHH in-
dex is independent of the cutpoint Yc and is normally
distributed, provided that O1E, O1C, O2E, and O2C are
not too small. Applying the delta method we can ap-
proximate the sampling variance of dHH by

SdHH

2 =
3

�2 � 1

O1E
+

1

O2E
+

1

O1C
+

1

O2C
� (17)

(Hasselblad & Hedges, 1995).
An effect size similar to dHH was proposed by Cox

(1970) and cited in Haddock et al. (1998). It consists
of dividing the log odds ratio by the constant 1.65:

dCox = LOR�1.65, (18)

and its sampling variance is estimated as

SdCox

2 = 0.367 � 1

O1E
+

1

O2E
+

1

O1C
+

1

O2C
�. (19)

However, most primary studies assume a normal
distribution in the underlying populations, and under
these conditions, the performance of the preceding
effect-size indices based on the logit transformation
can differ. Two effect-size indices based on the nor-
mal distribution assumption are the probit transfor-
mation and the biserial-phi coefficient. Glass, Mc-
Gaw, and Smith (1981) proposed the probit
transformation to obtain an effect-size index in the d
metric. Let pE and pC be the success proportions in
experimental and control groups, respectively, ob-

tained from the 2 × 2 table in a given study. The probit
transformation, dProbit, is obtained by

dProbit = �zE − zC� (20)

(Glass et al., 1981, p. 138), zE and zC being the inverse
of the standard normal distribution function for pE and
pC, respectively [zE � �−1(pE); zC � �−1(pC)]. As-
suming normal distributions, dProbit will be an unbi-
ased estimator of the population standardized mean
difference. The sampling variance of dProbit is esti-
mated as

SdProbit

2 =�2�pE�1 − pE�ezE
2

nE
+

2�pC�1 − pC�ezC
2

nC
�
(21)

(Rosenthal, 1994, p. 238).
Another option that assumes normal distributions to

summarize the results of a 2 × 2 table consists of
calculating the biserial-phi correlation coefficient,
�bis, and translating it into the d index by a typical r
to d translation formula (e.g., Hedges & Olkin, 1985;
Rosenthal, 1991). This correlation coefficient was
proposed by Thorndike (1949, 1982; see also Becker
& Thorndike, 1988) in the field of psychometrics. The
biserial-phi correlation is an unbiased estimate of the
point-biserial correlation when the continuous vari-
able has been dichotomized. It can be also defined as
a correction of the underestimation produced by the
phi coefficient, this correction being the same as that
proposed in Hunter and Schmidt (1990; see also Lip-
sey & Wilson, 2001, p. 111). The estimator is created
by multiplying the phi coefficient by the same multi-
plier used in creating the biserial. Therefore, the bi-
serial-phi coefficient can be obtained from the 2 × 2
table by

�bis =
�p�q�

y�
�, (22)

Becker & Thorndike, 1988, p. 525), where p� is the
global success proportion in the 2 × 2 table p� � (O1E

+ O1C)/N; y� is the probability density function of the
standard normal distribution corresponding to p�; and
q� � 1 − p�. Following the same strategy used with
the phi coefficient, �bis is translated to a d index, dbis,
by means of

dbis =
�bis

�1 − �bis
2
�df�nE + nC�

nEnC
(23)
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(Rosenthal, 1994, Equation 16–29, p. 239), with df �
nE + nC − 2. It is expected that dbis will be an unbiased
estimator of the population standardized mean differ-
ence. The sampling variance of dbis is estimated by
means of the delta method as

Sdbis

2 =
p�q��1 − �2��nE + nC�

y�2nEnC�1 − �bis
2 �3 . (24)

Because d, dp, d�, dasin, dHH, dCox, dProbit, and dbis

are in the same metric, their statistical properties can
be compared. Although we already know that dp and
d� underestimate the population effect size �, neither
the magnitude of the bias, nor how different factors
can affect dp and d�, has been explored. On the other
hand, studying the performance of dHH when the lo-
gistic distribution assumption is not met enables us to
determine the appropriateness of this index under
other distributions. Moreover, under normal distribu-
tions it is expected that dProbit and dbis will offer the
best results. Note that the results of our simulation
study are conditioned by the normal distribution as-
sumption. We have assumed such a condition because
most primary studies make this assumption. In fact,
although the normality assumption is often not tested,
researchers routinely apply parametric statistical tests
based on normal distributions. However, when the
meta-analyst considers that logistic or other distribu-
tions are more realistic, then the results of our simu-
lations should be interpreted very cautiously. To ex-
plore the performance of these effect indices under
nonnormal distributions, we have added a few condi-
tions representing skewed distributions.

An Example

To clarify the computational formulas of the dif-
ferent effect-size indices proposed and their sampling
variances, we have developed a numerical example by
randomly generating two samples of nE � nC � 20
from two normal distributions [YiE ∼ N(42, 16); YiC ∼
N(40, 16)] with parametric effect size, � � (42 −
40)/4 � 0.50. Applying the cutpoint Yc � 41 for
classifying, into success versus failure, the scores of
the two groups, we obtained the 2 × 2 table presented
in Table 2. Tables 3 and 4 present the calculations for
the seven effect-size indices and their sampling vari-
ances, respectively.

As expected, the three indices that showed the

Table 2
Data of the Example Obtained by Random Sampling
From Two Normal Distributions

Case

Group

Experimental Control

1 36.318 33.992
2 39.842 33.664
3 37.813 40.518
4 36.210 40.451
5 53.967 36.719
6 46.811 36.042
7 41.626 40.681
8 47.580 42.241
9 38.416 49.573

10 44.624 40.998
11 45.985 34.070
12 40.441 40.610
13 44.281 39.058
14 36.705 42.612
15 40.178 39.845
16 41.058 42.247
17 42.951 42.126
18 40.368 37.482
19 42.643 35.677
20 38.113 43.145

yj 41.796 39.587
Sj 4.468 3.877

Calculations of d index and its sampling variance

S =��nE − 1�SE
2 + �nC − 1�SC

2

nE + nC − 2

=��20 − 1�4.4682 + �20 − 1�3.8772

20 + 20 − 2
= 4.183

g =
yE − yC

S
=

41.796 − 39.587

4.183
= 0.528

c�m� = 1 −
3

4m − 1
= 1 −

3

4�20 + 20 − 2� − 1
= 0.9801

d = c�m�g = �0.9801��0.528� = 0.517

Sd
2 =

nE + nC

nEnC
+

d2

2�nE + nC�
=

20 + 20

�20��20�
+

0.5172

2�20 + 20�
= 0.1033

Process of dichotomization

Outcome

Group

TotalExperimental Control

Yc � 41 10 6 16
Yc < 41 10 14 24

Total 20 20 40
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Table 3
Calculations of the Different Effect-Size Indices of the Example in Table 2

dp index

pE = O1E�nE = 10�20 = 0.5

pC = O1C�nC = 6�20 = 0.3

S� =��nE − 1� pE �1 − pE� + �nC − 1�pC �1 − pC�

nE + nC − 2

=��19��0.5��0.5� + �19��0.3��0.7�

20 + 20 − 2
= 0.479

dp =
pE − pC

S�
=

0.5 − 0.3

0.479
= 0.417

d� index

� =
O1EO2C − O2EO1C

�nEnCm1m2

=
�10��14� − �6��10�

��20��20��16��24�
= 0.204

d� =
�

�1 − �2
�df�nE + nC�

nEnC
=

0.204

�1 − 0.2042
�38�20 + 20�

�20��20�
= 0.406

dasin index

dasin = 2arcsine�pE − 2arcsine�pC = 2arcsine�0.5 − 2arcsine�0.3 = 0.411

dHH index

OR =
pE �1 − pC�

pC �1 − pE�
=

�0.5��1 − 0.3�

�0.3��1 − 0.5�
= 2.333

LOR = Loge �OR� = Loge �2.333� = 0.847

dHH = LOR

�3

�
= �0.847�

�3

3.14159
= 0.467

dCox index

dCox = LOR�1.65 = 0.847�1.65 = 0.513

d
Probit

index

zE = �−1 �pE� = �−1 �0.5� = 0.0

zC = �−1 �pC� = �−1 �0.3� = −0.524

dProbit = �zE − zC� = 0.0 − �−0.524� = 0.524

dbis index

p� = �O1E + O1C��N = �10 + 6��40 = 0.4

q� = 1 − p� = 1 − 0.4 = 0.6

y� = 0.3864

�bis =
�p�q�

y�
� =

��0.4��0.6�

0.3864
�0.204� = 0.259

dbis =
�bis

�1 − �bis
2
�df �nE + nC�

nEnC
=

0.259

�1 − 0.2592
�38�20 + 20�

�20��20�
= 0.523
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highest underestimations of � were dp � 0.417, d� �
0.406, and dasin � 0.411, followed by dHH � 0.467
(Table 3). The estimates closest to � were dCox �
0.513, dProbit � 0.524, and dbis � 0.523. With respect
to the sampling variances (Table 4), those of dp (S2

dp

�0.1022), d� (S2
d�

� 0.1089), and dasin (S2
dasin

� 0.10)
were very close to that of the d index (Sd

2 � 0.1033)
and were smaller than those of dHH (S2

dHH
� 0.1332),

dCox (S2
dCox

� 0.1608), dProbit (S2
dProbit

� 0.1653), and
dbis (S2

dbis
� 0.1898). Taking in the example the sam-

pling variance of d as the point of reference, the loss
of efficiency due to the dichotomization in dHH, dCox,

dProbit, and dbis indices is not trivial: 28.9%, 55.7%,
60.0%, and 83.7%, respectively.

Method

The simulation study was programmed in Gauss
(Aptech Systems, 1992). Two normally distributed
populations with homogeneous variances were de-
fined, N(�E, �2) and N(�C, �2), where �E and �C are
the experimental and control population means, re-
spectively, and � is the common standard deviation.
The population standardized mean difference, �, was

Table 4
Calculations of the Sampling Variance of the Effect-Size Indices of the Example in Table 2

dp index

Sdp

2 =
nE + nC

nEnC
+

dp
2

2�nE + nC�
=

20 + 20

�20��20�
+

0.4172

2�20 + 20�
= 0.1022

d� index

Sd�

2 =
nE + nC

nEnC �1 − �2�2 =
20 + 20

�20��20��1 − 0.2042�2 = 0.1089

dasin index

Sdasin

2 =
1

nE
+

1

nC
=

1

20
+

1

20
= 0.10

dHH index

SdHH

2 =
3

�2� 1

O1E
+

1

O2E
+

1

O1C
+

1

O2C
� =

3

3.141592 � 1

10
+

1

10
+

1

6
+

1

14� = 0.1332

dCox index

SdCox

2 = 0.367� 1

O1E
+

1

O2E
+

1

O1C
+

1

O2C
� = 0.367� 1

10
+

1

10
+

1

6
+

1

14� = 0.1608

dProbit index

SdProbit

2 =�2�pE �1 − pE�ezE
2

nE
+

2�pC �1 − pC�ezC
2

nC
�

= ��2��3.14159��0.5��0.5�e02

20
+

�2��3.14159��0.3��0.7�e−0.5242

20
� = 0.1653

dbis index

Sdbis

2 =
p�q��1 − �2��nE + nC�

y�2 nEnC �1 − �bis
2 �3 =

�0.4��0.6��1 − 0.2042��20 + 20�

0.38642 �20��20��1 − 0.2592�3 = 0.1898
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defined in Equation 1. We assumed �2 � 1, �C � 0,
and consequently, �E � �. Furthermore, one cut-
point, Yc, dichotomized the continuous variable into
two levels. Pairs of independent random samples of
sizes nE and nC were generated from these popula-
tions.

Each pair of generated samples simulated the data
in a primary research study, which we expressed in
two metrics: the quantitative scores and the data di-
chotomized into two levels, over and under the cut-
point, forming a 2 × 2 table. When any of the cell
frequencies in the 2 × 2 table was zero, 0.5 was added
to all of them to avoid problems in the computation of
the effect indices. For the quantitative scores the d
index and its sampling variance were computed
(Equations 4 and 6). For the dichotomized data the dp,
d�, dasin, dHH, dCox, dProbit, and dbis indices were com-
puted (Equations 7, 11, 13, 15, 18, 20, and 23, respec-
tively) along with their sampling variances (Equations
9, 12, 14, 17, 19, 21, and 24, respectively).

The following factors were manipulated in the
simulations: (a) the total sample size of each study, N
� nE + nC, with values 48, 60, and 100; (b) the ratio
between sample sizes of the two groups in each study,
with three conditions nE � nC, nE � 2nC, and nE �
4nC; (c) in cases of unequal sample size, whether the
experimental or control groups had the largest sample
size; (d) following Cohen (1988), the value of the
population standardized mean difference, with values
of � � 0.2, 0.5, and 0.8; and (e) the value of the
cutpoint. The cutpoint was manipulated in the follow-
ing way: for � � 0.2, Yc � 0.1; for � � 0.5, Yc �
0.1, 0.25, and 0.4; and for � � 0.8, Yc � 0.1, 0.4, and
0.7. To simplify the presentation of the results, we
completely crossed all of the manipulated factors for
only � � 0.5, as it can be considered the effect of a
medium magnitude following Cohen (1988). So, only
71 of the 105 possible combinations among the dif-
ferent factors manipulated were reported (see Table
5). In particular, several combinations of ratios be-
tween sample sizes, the cutpoint, and the relation be-
tween sample size and the experimental and control
means were excluded. Additional analyses across the
full set of 105 conditions showed results with the
same trends found to the 71 conditions reported here.

For each one of the 71 conditions, 10,000 replica-
tions were generated. The d, dp, d�, dasin, dHH, dCox,
dbis, and dProbit indices were computed in each of these
replications. The bias of each of the eight indices was
assessed as the difference between the mean of the
10,000 empirical values of each index and the popu-

lation standardized mean difference �. On the other
hand, the variability of the indices was assessed by the
mean squared difference of each of the eight indices
with respect to �, across the 10,000 replications of the
same condition. Finally, the formulas for estimating
the sampling variances of the eight indices were com-
puted in each replication (Equations 6, 9, 12, 14, 17,
19, 21, and 24), and their values averaged over the
10,000 replicates of the same condition.

To begin an exploration of the performance of the
effect indices under departures from the normality
assumption, we included nine additional conditions in

Table 5
Conditions Manipulated in the Simulation Study Under
Normal Distributions

� N nE nC Yc � N nE nC Yc

0.2 48 24 24 .1 0.5 48 16 32 .4
0.2 48 32 16 .1 0.5 60 30 30 .4
0.2 60 30 30 .1 0.5 60 40 20 .4
0.2 60 40 20 .1 0.5 60 20 40 .4
0.2 60 48 12 .1 0.5 60 48 12 .4
0.2 100 50 50 .1 0.5 60 12 48 .4
0.2 100 66 34 .1 0.5 100 50 50 .4
0.2 100 80 20 .1 0.5 100 66 34 .4
0.5 48 24 24 .1 0.5 100 34 66 .4
0.5 48 32 16 .1 0.5 100 80 20 .4
0.5 48 16 32 .1 0.5 100 20 80 .4
0.5 60 30 30 .1 0.8 48 24 24 .1
0.5 60 40 20 .1 0.8 48 32 16 .1
0.5 60 20 40 .1 0.8 60 30 30 .1
0.5 60 48 12 .1 0.8 60 40 20 .1
0.5 60 12 48 .1 0.8 60 48 12 .1
0.5 100 50 50 .1 0.8 100 50 50 .1
0.5 100 66 34 .1 0.8 100 66 34 .1
0.5 100 34 66 .1 0.8 100 80 20 .1
0.5 100 80 20 .1 0.8 48 24 24 .4
0.5 100 20 80 .1 0.8 48 32 16 .4
0.5 48 24 24 .25 0.8 60 30 30 .4
0.5 48 32 16 .25 0.8 60 40 20 .4
0.5 48 16 32 .25 0.8 60 48 12 .4
0.5 60 30 30 .25 0.8 100 50 50 .4
0.5 60 40 20 .25 0.8 100 66 34 .4
0.5 60 20 40 .25 0.8 100 80 20 .4
0.5 60 48 12 .25 0.8 48 24 24 .7
0.5 60 12 48 .25 0.8 48 32 16 .7
0.5 100 50 50 .25 0.8 60 30 30 .7
0.5 100 66 34 .25 0.8 60 40 20 .7
0.5 100 34 66 .25 0.8 60 48 12 .7
0.5 100 80 20 .25 0.8 100 50 50 .7
0.5 100 20 80 .25 0.8 100 66 34 .7
0.5 48 24 24 .4 0.8 100 80 20 .7
0.5 48 32 16 .4
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which the shape of the continuous variable distribu-
tions was manipulated. Three levels of population
nonnormality were considered: skewness � 0.5 and
kurtosis � 0, skewness � 0.75 and kurtosis � 0, and
skewness � 1.75 and kurtosis � 3.75. The distribu-
tion shapes were identical for the two populations
simulated. The total sample size was fixed with N �
60, with nE � nC � 30, for all these conditions; the
population standardized mean difference was manipu-
lated with values � � 0.2, 0.5, and 0.8; and the cut-
point was manipulated with these values: for � � 0.2,
Yc � 0.1; for � � 0.5, Yc � 0.25; and for � � 0.8,
Yc � 0.4.

Using the Fleishman (1978) power transformation,
X � a + bZ + cZ2 + dZ3, we transformed two standard
normal distributions, Z ∼ N(0, 1), to reflect the target
distribution shapes. For the skewed–mesokurtic dis-
tributions (skewness � 0.5 and kurtosis � 0, skew-
ness � 0.75 and kurtosis � 0), the constants were a
� −0.093, b � 1.040, c � 0.093, and d � −0.016;
and a � −0.174, b � 1.114, c � 0.174, and d �
−0.503, respectively. For the skewed–leptokurtic dis-
tribution (skewness � 1.75 and kurtosis � 3.75), the
constants were a � −0.399, b � 0.930, c � 0.399,
and d � −0.036. To generate data with �2 � 1, �C �
0, and �E � �, we transformed each simulated ex-
perimental observation by adding the desired popula-
tion mean. For each of the nine conditions, 10,000
replications were generated, and the bias of the eight
indices was computed in the same way as for the
simulations under the normality assumption.

Results

First, we show the results of bias and sampling
variances assuming normal distributions, and next we
focus on the results for nonnormal distributions.

Bias of the Estimators

Tables 6 and 7 show the bias of the different esti-
mators calculated as the difference between the mean
of each estimator over the 10,000 replicates and the
population standardized mean difference �, assuming
normal distributions. Therefore, positive values re-
flect an overestimation of �, whereas negative values
imply the opposite.

The standardized mean difference index d is the
only effect-size estimator in our simulation study that
was calculated on the continuous values before di-
chotomizing the dependent variable. So, it was in-
cluded only for comparison purposes. As expected,
the d index exhibited the best performance in all of the

conditions (for � � 0.2, bias � 0.0005; for � � 0.5,
bias � 0.0002; and for � � 0.8, bias � −0.0003).

The seven other effect-size indices represent differ-
ent alternatives for estimating the population stan-
dardized mean difference when the dependent vari-
able has been dichotomized. From these, the dCox

index showed the best performance in most of the
conditions (for � � 0.2, bias � 0.0025; for � � 0.5,
bias � 0.0076; and for � � 0.8, bias � 0.0238),
although with a very slight overestimation of �. The
dProbit index performed second best (for � � 0.2, bias
� 0.0084; for � � 0.5, bias � 0.0189; and for � �
0.8, bias � 0.0293), but it slightly overestimated �, its
overestimation rising as � increased. In fact, as shown
in Tables 6 and 7, all values for the dProbit index were
positive. The dbis index also overestimated � (for � �
0.2, bias � 0.0103; for � � 0.5, bias � 0.0339; and
for � � 0.8, bias � 0.0885). Again the overestima-
tion increased with �, this trend being more pro-
nounced than in the case of the dProbit index. Fourth,
the dHH index showed a slight underestimation that
also increased with � (for � � 0.2, bias � −0.0149;
for � � 0.5, bias � −0.0367; and for � � 0.8, bias �
−0.0506).

Finally, as expected, the dp, d�, and dasin indices
showed a clear systematic underestimation (dp: for �
� 0.2, bias � −0.0334; for � � 0.5, bias � −0.0837;
and for � � 0.8, bias � −0.1313. d�: for � � 0.2,
bias � −0.0359; for � � 0.5, bias � −0.0854; and for
� � 0.8, bias � −0.1415. dasin: for � � 0.2, bias �
−0.0357; for � � 0.5, bias � −0.0938; and for � �
0.8, bias � −0.1602) that increased with �. In fact, for
all of the manipulated conditions, these indices
showed negative biases, their magnitude being clearly
larger than those of the other indices. An example
illustrates the pattern of the results: With � � 0.5,
cutpoint Yc � 0.25, and nE � nC � 30, the bias of the
different effect-size estimators was Bias(d) � 0.0029,
Bias(dCox) � 0.0071, Bias(dProbit) � 0.0184,
Bias(dbis) � 0.0386, Bias(dHH) � −0.0387, Bias(dp)
� −0.0791, Bias(d�) � −0.0862, and Bias(dasin) �
−0.0922.

Of the different manipulated factors, the magnitude
of the parametric effect size � was the only one with
a clear influence on the bias of the estimators, with the
exception of the unbiased d index. As � increased, the
overestimation of dCox, dProbit, and dbis increased, and
the underestimation of dHH, dp, d�, and dasin also in-
creased; the magnitude of this trend being different
for each of the indices. As a consequence, the dis-
crepancies among the indices are more pronounced
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for � � 0.8 than for � � 0.2. This trend was espe-
cially pronounced for dbis, its overestimation of � be-
ing remarkably large, in particular with cutpoint Yc �
0.1 and imbalanced sample sizes for which the larger
sample was assigned to the larger mean (that in our
simulation always belonged to the experimental popu-
lation). The poorest performance of dbis happened un-
der the conditions with the largest distance between
the cutpoint and the parameter �, and unbalanced
sample sizes. On the other hand, neither the total
sample size, the nE:nC ratio, the cutpoint, nor the re-
lationship between sample size and the experimental
and control means seemed to clearly affect the bias of
the other effect-size estimators.

Sampling Variance of the Estimators

To compare the variances of the different estima-
tors, for every manipulated condition we calculated
the mean squared difference between each estimator
and the population effect size � for the 10,000 repli-
cates. Note that as the bias of the estimator increases,
this mean squared difference differs from the variance
obtained, taking into account the empirical mean of
the 10,000 replicates. However, when the purpose of
the different effect-size indices is to estimate the same
parameter (the population standardized mean differ-
ence �), the deviations of interest are those with re-
spect to the true parameter, � in our study.

Table 6
Bias of the Effect-Size Indices for � = 0.2 and � = 0.8

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

� � 0.2

.1 48 24 24 −.0007 −.0319 −.0355 −.0358 −.0144 −.0040 .0087 .0126

.1 48 32 16 −.0004 −.0297 −.0333 −.0331 −.0106 .0082 .0126 .0155

.1 60 30 30 .0006 −.0329 −.0358 −.0362 −.0159 .0024 .0075 .0109

.1 60 40 20 .0008 −.0341 −.0368 −.0369 −.0162 .0021 .0070 .0095

.1 60 48 12 −.0019 −.0367 −.0393 −.0371 −.0149 .0035 .0073 .0061

.1 100 50 50 .0003 −.0356 −.0372 −.0375 −.0187 −.0007 .0049 .0070

.1 100 66 34 .0045 −.0325 −.0342 −.0343 −.0149 .0035 .0092 .0109

.1 100 80 20 .0008 −.0336 −.0352 −.0344 −.0139 .0046 .0098 .0095

� � 0.8

.1 48 24 24 .0040 −.1257 −.1399 −.1591 −.0359 .0400 .0395 .1076

.1 48 32 16 .0010 −.1097 −.1252 −.1671 −.0511 .0232 .0258 .1564

.1 60 30 30 −.0010 −.1335 −.1447 −.1641 −.0475 .0272 .0294 .0906

.1 60 40 20 −.0026 −.1144 −.1266 −.1672 −.0549 .0191 .0233 .1386

.1 60 48 12 −.0019 −.0986 −.1115 −.1688 −.0574 .0163 .0208 .1796

.1 100 50 50 −.0011 −.1419 −.1486 −.1680 −.0601 .0133 .0196 .0720

.1 100 66 34 −.0003 −.1267 −.1339 −.1721 −.0667 .0061 .0130 .1109

.1 100 80 20 .0048 −.1032 −.1109 −.1663 −.0606 .0128 .0202 .1584

.4 48 24 24 −.0014 −.1150 −.1294 −.1537 −.0564 .0174 .0298 .1064

.4 48 32 16 .0021 −.1155 −.1297 −.1513 −.0499 .0246 .0351 .1054

.4 60 30 30 −.0026 −.1236 −.1349 −.1588 −.0661 .0068 .0206 .0893

.4 60 40 20 .0044 −.1152 −.1266 −.1493 −.0521 .0222 .0350 .1014

.4 60 48 12 −.0025 −.1238 −.1347 −.1486 −.0451 .0299 .0383 .0870

.4 100 50 50 .0010 −.1315 −.1382 −.1612 −.0750 −.0031 .0138 .0719

.4 100 66 34 .0031 −.1280 −.1348 −.1574 −.0695 .0030 .0194 .0766

.4 100 80 20 −.0004 −.1286 −.1352 −.1541 −.0614 .0120 .0264 .0746

.7 48 24 24 −.0067 −.1289 −.1430 −.1623 −.0401 .0353 .0352 .1041

.7 48 32 16 −.0015 −.1465 −.1593 −.1501 −.0170 .0607 .0545 .0549

.7 60 30 30 .0000 −.1314 −.1427 −.1624 −.0450 .0299 .0319 .0954

.7 60 40 20 −.0021 −.1590 −.1690 −.1639 −.0389 .0367 .0346 .0365

.7 60 48 12 −.0045 −.1722 −.1813 −.1438 −.0145 .0635 .0535 .0024

.7 100 50 50 .0020 −.1403 −.1469 −.1666 −.0588 .0148 .0213 .0746

.7 100 66 34 .0009 −.1618 −.1678 −.1679 −.0558 .0181 .0223 .0296

.7 100 80 20 −.0014 −.1759 −.1814 −.1597 −.0338 .0422 .0400 −.0008
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Tables 8–13 show the sampling variances of the
estimators with respect to �. As expected, the d index
was the most efficient of the indices because it was
the only one using all of the quantitative information
in the dependent variable (for � � 0.2, variance �
0.0712; for � � 0.5, variance � 0.0756; and for � �
0.8, variance � 0.0770). In the remaining indices, the
cost of dichotomization implies a loss of information
and, as a consequence, a loss of accuracy in the esti-
mators. In effect, all of the indices showed higher
sampling variances than that of the d index. Among

the seven effect-size indices for 2 × 2 tables, dp, d�,
and dasin had the lowest variances, although they were
the most biased [dp: for � � 0.2, Var(dp) � 0.0770;
for � � 0.5, Var(dp) � 0.0911; and for � � 0.8,
Var(dp) � 0.1096. d�: for � � 0.2, Var(d�) �
0.0749; for � � 0.5, Var(d�) � 0.0895; and for � �
0.8, Var(d�) � 0.1094. dasin: for � � 0.2, Var(dasin)
� 0.0750; for � � 0.5, Var(dasin) � 0.0864; and for
� � 0.8, Var(dasin) � 0.1028]. Next, dHH and dCox

obtained variances larger than those of dp, d�, and
dasin [dHH: for � � 0.2, Var(dHH) � 0.0957; for � �

Table 7
Bias of the Effect-Size Indices for � = 0.5

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.1 48 24 24 .0004 −.0799 −.0887 −.0942 −.0347 .0115 .0199 .0415

.1 48 32 16 .0021 −.0746 −.0837 −.0944 −.0362 .0099 .0190 .0526

.1 48 16 32 −.0033 −.0849 −.0933 −.0913 −.0260 .0210 .0269 .0317

.1 60 30 30 .0053 −.0809 −.0879 −.0935 −.0360 .0100 .0193 .0388

.1 60 40 20 .0027 −.0755 −.0827 −.0931 −.0368 .0091 .0193 .0493

.1 60 20 40 −.0017 −.0878 −.0945 −.0934 −.0314 .0151 .0225 .0267

.1 60 48 12 .0009 −.0758 −.0830 −.0951 −.0379 .0080 .0173 .0514

.1 60 12 48 −.0008 −.0903 −.0966 −.0840 −.0137 .0346 .0376 .0198

.1 100 50 50 −.0016 −.0901 −.0942 −.0995 −.0471 .0022 .0091 .0242

.1 100 66 34 .0028 −.0834 −.0876 −.0969 −.0448 .0004 .0119 .0357

.1 100 34 66 −.0034 −.0892 −.0933 −.0940 −.0386 .0072 .0176 .0229

.1 100 80 20 .0020 −.0808 −.0851 −.0969 −.0439 .0013 .0126 .0415

.1 100 20 80 .0034 −.0920 −.0958 −.0894 −.0279 .0190 .0271 .0170

.25 48 24 24 −.0083 −.0857 −.0944 −.1002 −.0455 .0004 .0098 .0316

.25 48 32 16 .0038 −.0735 −.0823 −.0872 −.0285 .0183 .0278 .0488

.25 48 16 32 −.0014 −.0752 −.0841 −.0889 −.0305 .0161 .0256 .0456

.25 60 30 30 .0029 −.0791 −.0862 −.0922 −.0387 .0071 .0184 .0386

.25 60 40 20 −.0031 −.0814 −.0884 −.0933 −.0385 .0073 .0181 .0355

.25 60 20 40 −.0016 −.0845 −.0914 −.0965 −.0421 .0034 .0142 .0319

.25 60 48 12 .0033 −.0180 −.0878 −.0887 −.0288 .0180 .0265 .0358

.25 60 12 48 −.0029 −.0842 −.0910 −.0913 −.0315 .0150 .0232 .0317

.25 100 50 50 −.0011 −.0898 −.0939 −.0995 −.0506 −.0060 .0069 .0224

.25 100 66 34 −.0021 −.0903 −.0944 −.0995 −.0500 −.0054 .0073 .0216

.25 100 34 66 .0035 −.0851 −.0893 −.0945 −.0440 .0012 .0139 .0286

.25 100 80 20 −.0014 −.0871 −.0912 −.0942 −.0412 .0044 .0159 .0257

.25 100 20 80 .0028 −.0852 −.0892 −.0921 −.0387 .0071 .0188 .0282

.4 48 24 24 .0019 −.0729 −.0819 −.0880 −.0270 .0199 .0283 .0521

.4 48 32 16 −.0004 −.0838 −.0923 −.0899 −.0246 .0225 .0285 .0328

.4 48 16 32 −.0029 −.0734 −.0825 −.0932 −.0346 .0116 .0208 .0552

.4 60 30 30 .0010 −.0811 −.0881 −.0936 −.0365 .0096 .0191 .0384

.4 60 40 20 −.0001 −.0873 −.0937 −.0928 −.0314 .0152 .0230 .0275

.4 60 20 40 .0055 −.0765 −.0837 −.0938 −.0377 .0082 .0184 .0479

.4 60 48 12 .0009 −.0896 −.0959 −.0829 −.0120 −.0364 .0391 .0208

.4 60 12 48 .0010 −.0778 −.0849 −.0969 −.0402 .0055 .0151 .0487

.4 100 50 50 .0007 −.0910 −.0951 −.1004 −.0479 −.0031 .0082 .0233

.4 100 66 34 −.0023 −.0963 −.1003 −.1009 −.0469 −.0019 .0086 .0135

.4 100 34 66 −.0030 −.0878 −.0920 −.1011 −.0494 −.0047 .0068 .0301

.4 100 80 20 .0009 −.0949 −.0987 −.0927 −.0318 .0147 .0228 .0132

.4 100 20 80 .0013 −.0829 −.0871 −.0989 −.0463 −.0013 .0101 .0390
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Table 9
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.5 and Yc = .1

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.1 48 24 24 .0845 .1043 .1017 .0949 .1191 .1426 .1450 .1788
(.0868) (.0862) (.0957) (.0833) (.1137) (.1373) (.1396) (.1837)

.1 48 32 16 .0969 .1200 .1166 .1074 .1354 .1621 .1653 .2143
(.0974) (.0968) (.1070) (.0938) (.1270) (.1533) (.1564) (.2099)

.1 48 16 32 .0979 .1142 .1115 .1094 .1458 .1758 .1743 .1896
(.0973) (.0967) (.1063) (.0938) (.1348) (.1627) (.1612) (.1983)

.1 60 30 30 .0692 .0843 .0829 .0778 .0950 .1133 .1156 .1402
(.0694) (.0688) (.0757) (.0667) (.0900) (.1086) (.1110) (.1409)

.1 60 40 20 .0796 .0967 .0948 .0878 .1074 .1282 .1317 .1679
(.0778) (0.772) (.0846) (.0750) (.1001) (.1209) (.1241) (.1609)

.1 60 20 40 .0790 .0941 .0926 .0907 .1174 .1409 .1409 .1502
(.0777) (.0771) (.0841) (.0750) (.1057) (.1276) (.1277) (.1521)

.1 60 48 12 .1057 .1302 .1273 .1211 .1552 .1858 .1881 .2271
(.1071) (.1067) (.1149) (.1042) (.1434) (.1732) (.1752) (.2152)

.1 60 12 48 .1079 .1187 .1167 .1257 .1733 .2104 .2039 .1840
(.1071) (.1065) (.1139) (.1042) (.1602) (.1935) (.1855) (.1985)

.1 100 50 50 .0408 .0529 .0528 .0503 .0556 .0645 .0666 .0785
(.0414) (.0411) (.0445) (.0400) (.0528) (.0637) (.0658) (.0791)

.1 100 66 34 .0466 .0584 .0581 .0548 .0612 .0715 .0743 .0918
(.0461) (.0457) (.0493) (.0446) (.0581) (.0701) (.0728) (.0885)

.1 100 34 66 .0468 .0580 .0578 .0562 .0660 .0780 .0796 .0861
(.0461) (.0557) (.0491) (0.446) (.0605) (.0731) (0.744) (.0859)

.1 100 80 20 .0636 .0798 .0790 .0749 .0883 .1044 .1080 .1299
(.0641) (.0637) (.0677) (.0625) (.0822) (.0992) (.1026) (.1209)

.1 100 20 80 .0620 .0715 .0711 .0729 .0945 .1136 .1130 .1051
(.0641) (.0636) (.0673) (.0625) (.0896) (.1082) (.1075) (.1143)

Table 8
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.2

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.1 48 24 24 .0832 .0896 .0861 .0849 .1077 .1299 .1356 .1438
(.0846) (.0845) (.0884) (.0833) (.1069) (.1291) (.1349) (.1502)

.1 48 32 16 .0929 .1046 .1006 .1005 .1302 .1573 .1630 .1689
(.0951) (.0951) (.0995) (.0938) (.1224) (.1478) (.1532) (.1696)

.1 60 30 30 .0661 .0723 .0701 .0691 .0863 .1040 .1091 .1149
(.0676) (.0675) (.0701) (.0667) (.0847) (.1022) (.1073) (.1172)

.1 60 40 20 .0761 .0817 .0793 .0790 .1001 .1207 .1260 .1301
(.0760) (.0759) (.0787) (.0750) (.0964) (.1164) (.1215) (.1315)

.1 60 48 12 .1029 .1104 .1072 .1115 .1482 .1788 .1827 .1748
(.1054) (.1053) (.1088) (.1042) (.1401) (.1692) (.1729) (.1808)

.1 100 50 50 .0405 .0435 .0428 .0423 .0515 .0618 .0652 .0676
(.0404) (.0403) (.0414) (.0400) (.0500) (.0604) (.0638) (.0667)

.1 100 66 34 .0454 .0481 .0473 .0470 .0580 .0698 .0735 .0755
(.0450) (.0449) (.0461) (.0446) (.0560) (.0677) (.0714) (.0753)

.1 100 80 20 .0628 .0657 .0660 .0657 .0834 .1005 .1049 .1031
(.0630) (.0630) (.0644) (.0625) (.0804) (.0971) (.1014) (.1048)
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0.5, Var(dHH) � 0.1080; and for � � 0.8, Var(dHH)
� 0.1204. dCox: for � � 0.2, Var(dCox) � 0.1154; for
� � 0.5, Var(dCox) � 0.1290; and for � � 0.8,
Var(dCox) � 0.1430]. The fact that the dHH index had
a slightly lower variance than dCox was due to the
different multiplier constants used in both formulas.
Very close to the variance of dCox index was that of
dProbit, the latter being even lower than the former for
� � 0.8 [for � � 0.2, Var(dProbit) � 0.1200; for � �
0.5, Var(dProbit) � 0.1306; and for � � 0.8,
Var(dProbit) � 0.1369]. The least efficient estimator
was dbis, especially for � � 0.8 [for � � 0.2, Var(dbis)
� 0.1223; for � � 0.5, Var(dbis) � 0.1496; and for
� � 0.8, Var(dbis) � 0.2096]. The larger bias of dbis

with � � 0.8 together with the great heterogeneity of
this index explain this result.

Several factors affected the variances of the esti-
mators. First, there was a direct relationship between
the magnitude of the parameter � and the values of the
empirical variances for all of the effect-size indices.
This trend was due to the larger bias of the indices as
� increased, as shown in the previous section. As

expected, the larger the sample size, the lower the
empirical variances. The imbalance between the
sample sizes of experimental and control groups also
affected the variances. In particular, the variances in-
creased as the imbalance increased. Neither the rela-
tionship between the sample sizes and the experimen-
tal and control means nor the cutpoint seemed to
affect the variances in a clear way. An exception was
the variance of dbis, where for � � 0.8, Yc � 0.1, and
unbalanced sample sizes with the lowest sample size
assigned to the control group, the largest variances
occurred. For example, with nE � nC � 24, the em-
pirical variance was 0.2690, whereas with nE � 32
and nC � 16, the variance was 0.3927 (Table 12). The
higher variance is a consequence of the greater over-
estimation of dbis under these conditions.

Another objective of our simulation study was to
examine the sampling variance formulas derived from
statistical theory for the effect-size indices. The per-
formance of some of the formulas has never been
tested yet is crucial for their role in weighting every
single effect size by its inverse variance. Tables 8–13

Table 10
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.5 and Yc = .25

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.25 48 24 24 .0856 .1066 .1040 .0971 .1184 .1406 .1444 .1785
(.0867) (.0862) (.0955) (.0833) (.1113) (.1344) (.1378) (.1814)

.25 48 32 16 .0988 .1164 .1133 .1070 .1368 .1647 .1677 .2196
(.0974) (.0968) (.1069) (.0938) (.1282) (.1548) (.1572) (1.010)

.25 48 16 32 .0983 .1166 .1135 .1075 .1374 .1651 .1677 .1997
(.0974) (.0968) (.1069) (.0938) (.1282) (.1548) (.1571) (.2015)

.25 60 30 30 .0695 .0843 .0828 .0773 .0926 .1102 .1137 .1394
(.0693) (.0688) (.0758) (.0667) (.0881) (.1064) (.1098) (.1396)

.25 60 40 20 .0773 .0928 .0912 .0865 .1059 .1263 .1296 .1524
(.0777) (.0772) (.0843) (.0750) (.1004) (.1213) (.1244) (.1536)

.25 60 20 40 .0770 .0966 .0949 .0899 .1100 .1308 .1341 .1583
(.0777) (.0772) (.0843) (.0750) (.1005) (.1213) (.1244) (.1541)

.25 60 48 12 .1073 .1249 .1224 .1223 .1607 .1935 .1940 .2043
(.1072) (.1066) (.1145) (.1042) (.1475) (.1781) (.1778) (.2043)

.25 60 12 48 .1075 .1254 .1230 .1240 .1627 .1956 .1952 .2042
(.1071) (.1066) (.1144) (.1042) (.1481) (.1788) (.1780) (.2043)

.25 100 50 50 .0409 .0536 .0534 .0509 .0558 .0644 .0669 .0789
(.0414) (.0411) (.0445) (.0400) (.0519) (.0626) (.0652) (.0784)

.25 100 66 34 .0463 .0581 .0579 .0556 .0620 .0720 .0747 .0860
(.0460) (.0457) (.0491) (.0446) (.0581) (.0702) (.0728) (.0860)

.25 100 34 66 .0476 .0583 .0581 .0556 .0631 .0739 .0766 .0886
(.0461) (.0457) (.0492) (.0865) (.0583) (.0704) (.0729) (.0865)

.25 100 80 20 .0643 .0759 .0753 .0742 .0896 .1063 .1089 .1157
(.0641) (.0637) (.0675) (.0625) (.0839) (.1014) (.1038) (.1162)

.25 100 20 80 .0622 .0745 .0740 .0728 .0884 .1050 .1075 .1145
(.0641) (.0637) (.0675) (.0625) (.0840) (.1015) (.1038) (.1163)
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show (in parentheses) the results of applying the for-
mulas in each of the manipulated conditions, the val-
ues in the table being the means across the 10,000
replicates. As expected, the d index showed optimal
sampling variance estimation, being very close to
both the empirical variance and the mean variance
from the formula (Equation 6) in all of the conditions.
The formulas for the variances for dHH, dCox, and
dProbit indices (Equations 17, 19, and 21, respectively)
slightly underestimated the empirical variances. For
example, with � � 0.5, cutpoint Yc � 0.25, nE � nC

� 30, the empirical variances for dHH, dCox, and
dProbit were 0.0926, 0.1102, and 0.1137, respectively,
whereas the mean values obtained with the formulas
were 0.0881, 0.1064, and 0.1098 (see Table 10). It can
be assumed that the discrepancies are negligible and
also due to the slight bias of the estimators that was
noted in the previous section.

The formula for the variance of dbis (Equation 24)
estimated the empirical variance well for � � 0.2 and
� � 0.5, in all conditions. However, with � � 0.8 it
suffered a more irregular performance; in particular,

with Yc � 0.1 and unbalanced sample sizes, the vari-
ance obtained by the formula was clearly larger than
the empirical value. For example, for � � 0.8, Yc �
0.1, nE � 32 and nC � 16, the mean variance with the
formula was 0.5179, whereas the empirical variance
was 0.3927 (see Table 12).

Finally, the formulas of the variances for dp, d�,
and dasin (Equations 9, 12, and 14, respectively) sys-
tematically underestimated the empirical variances,
the magnitude of such a deviation being higher as �
increased. This result is explained by the bias of these
indices as estimators of �, which also increased with
the magnitude of �, as noted in the previous section.

Nonnormal Distributions

Although the main focus of this article was testing
the performance of different effect-size indices under
the normality assumption, we have included a few
conditions in which this assumption is not met to
tentatively explore the robustness of these indices to
violations of the normal distribution. There are many
different ways for data to be nonnormally distributed,

Table 11
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.5 and Yc = .4

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.4 48 24 24 .0878 .1077 .1048 .0972 .1238 .1492 .1514 .1921
(.0869) (.0863) (.0962) (.0833) (.1142) (.1379) (.1399) (.1913)

.4 48 32 16 .0981 .1122 .1095 .1078 .1436 .1733 .1718 .1854
(.0974) (.0966) (.1062) (.0938) (.1350) (.1628) (.1614) (.1970)

.4 48 16 32 .0976 .1211 .1177 .1081 .1366 .1638 .1670 .2221
(.0973) (.0969) (.1072) (.0938) (.1273) (.1537) (.1566) (.2188)

.4 60 30 30 .0696 .0832 .0818 .0767 .0931 .1110 .1135 .1379
(.0693) (.0688) (.0756) (.0667) (.0898) (.1085) (.1109) (.1407)

.4 60 40 20 .0769 .0910 .0896 .0874 .1124 .1349 .1351 .1457
(.0778) (.0771) (.0840) (.0750) (.1053) (.1271) (.1275) (.1519)

.4 60 20 40 .0774 .0949 .0931 .0861 .1047 .1249 .1284 .1635
(.0777) (.0772) (.0846) (.0750) (.0999) (.1207) (.1241) (.1593)

.4 60 48 12 .1072 .1185 .1165 .1264 .1751 .2127 .2053 .1843
(.1071) (.1065) (.1140) (.1042) (.1610) (.1944) (.1861) (.1988)

.4 60 12 48 .1061 .1308 .1280 .1217 .1557 .1863 .1887 .2262
(.1071) (.1067) (.1149) (.1042) (.1432) (.1730) (.1751) (.2140)

.4 100 50 50 .0412 .0537 .0535 .0511 .0567 .0657 .0677 .0796
(.0415) (.0411) (.0445) (.0400) (.0528) (.0638) (.0658) (.0792)

.4 100 66 34 .0466 .0579 .0578 .0563 .0647 .0755 .0771 .0830
(.0460) (.0456) (.0490) (.0446) (.0603) (.0728) (.0743) (.0853)

.4 100 34 66 .0461 .0590 .0588 .0556 .0616 .0715 .0741 .0910
(.0460) (.0457) (.0492) (.0446) (.0580) (.0701) (.0728) (.0882)

.4 100 80 20 .0659 .0747 .0742 .0758 .0975 .1168 .1164 .1094
(.0641) (.0636) (.0673) (.0625) (.0894) (.1079) (.1074) (.1143)

.4 100 20 80 .0646 .0808 .0800 .0761 .0894 .1054 .1090 .1306
(.0641) (.0637) (.0677) (.0625) (.0822) (.0992) (.1026) (.1208)
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so, we have included only three possible nonnormal
distributions resulting from combining different val-
ues of skewness and kurtosis. Table 14 shows the bias
of the different effect-size indices in respect to � for
the nine simulated conditions of population distribu-
tion � and cutpoint Yc. As a point of reference, the
table also includes the bias of the effect indices as-
suming normal distributions (skewness � 0 and kur-
tosis � 0).

The simulated shapes of the distributions made it
possible to explore the effect on the bias of increasing
the degree of skewness (values of 0, 0.5, and 0.75)
while the kurtosis was kept constant with value 0 and
to compare these results with the ones in a more re-
alistic condition in which the values of skewness and
kurtosis differ from 0 (skewness � 1.75 and kurtosis
� 3.75). The most robust of the indices was d, which

was scarcely affected by changes in the shape of the
distributions, its estimated bias being very close to
zero. On the other hand, the negative bias of dp, d�,
dasin, and dHH indices was greater as the skewness
increased, and the slightly positive bias of dCox,
dProbit, and dbis indices seemed to first decrease and
then change to a greater and greater negative bias as
the skewness increased. As in the case of normal dis-
tributions, the magnitude of the population effect size
affected the bias of the effect indices, the latter in-
creasing as the former also increased.

Comparing the performance of the indices in the
adverse (slightly nonnormal) conditions, we found
that the dp, d�, and dasin indices performed much as
they did under normal distributions, showing the larg-
est bias, with systematically negative values [average
bias across the nine nonnormal conditions: Bias(dp)

Table 12
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.8 and Yc = .1 and Yc = .4

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.1 48 24 24 .0907 .1275 .1266 .1142 .1448 .1751 .1645 .2690
(.0910) (.0892) (.1100) (.0833) (.1337) (.1615) (.1521) (.2917)

.1 48 32 16 .1011 .1493 .1467 .1258 .1488 .1772 .1730 .3927
(.1015) (.1001) (.1226) (.0938) (.1396) (.1685) (.1646) (.5179)

.1 60 30 30 .0725 .1044 .1047 .0960 .1110 .1321 .1261 .1989
(.0726) (.0711) (.0863) (.0667) (.1040) (.1255) (.1200) (.2056)

.1 60 40 20 .0786 .1185 .1176 .1041 .1146 .1353 .1334 .2700
(.0810) (.0798) (.0963) (.0750) (.1096) (.1323) (.1304) (.2510)

.1 60 48 12 .1108 .1674 .1644 .1416 .1661 .1970 .1955 .4222
(.1104) (.1096) (.1280) (.1042) (.1510) (.1823) (.1804) (.3546)

.1 100 50 50 .0436 .0703 .0712 .0689 .0653 .0747 .0727 .1094
(.0434) (.0424) (.0505) (.0400) (.0602) (.0727) (.0707) (.1087)

.1 100 66 34 .0492 .0795 .0799 .0767 .0716 .0812 .0811 .1526
(.0480) (.0471) (.0558) (.0446) (.0635) (.0766) (.0764) (.1279)

.1 100 80 20 .0670 .1036 .1032 .0946 .0962 .1120 .1135 .2342
(.0661) (.0654) (.0749) (.0625) (.0866) (.1045) (.1056) (.1737)

.4 48 24 24 .0901 .1256 .1244 .1093 .1270 .1500 .1493 .2659
(.0909) (.0894) (.1108) (.0833) (.1204) (.1453) (.1441) (.2901)

.4 48 32 16 .1044 .1390 .1375 .1239 .1523 .1816 .1779 .2872
(.1015) (.0999) (.1216) (.0938) (.1398) (.1688) (.1648) (.3073)

.4 60 30 30 .0725 .1059 .1058 .0956 .1044 .1210 .1212 .1996
(.0726) (.0712) (.0870) (.0667) (.0948) (.1144) (.1143) (.1998)

.4 60 40 20 .0818 .1139 .1134 .1030 .1209 .1433 .1419 .2240
(.0811) (.0797) (.0961) (.0750) (.1093) (.1320) (.1303) (.2235)

.4 60 48 12 .1105 .1464 .1454 .1424 .1804 .2164 .2085 .2688
(.1104) (.1091) (.1256) (.1042) (.1632) (.1971) (.1878) (.2689)

.4 100 50 50 .0430 .0685 .0693 .0664 .0619 .0680 .0688 .1082
(.0434) (.0425) (.0508) (.0400) (.0555) (.0671) (.0678) (.1052)

.4 100 66 34 .0491 .0744 .0750 .0719 .0710 .0799 .0806 .1208
(.0480) (.0471) (.0556) (.0446) (.0625) (.0754) (.0759) (.1135)

.4 100 80 20 .0649 .0889 .0894 .0874 .0965 .11224 .1113 .1436
(.0660) (.0651) (.0736) (.0625) (.0908) (.1096) (.1084) (.1432)
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� −0.1251, Bias(d�) � −0.1314, and Bias(dasin) �
−0.1382]. Next, the dHH index also showed a negative
bias, although systematically lower than that of the
previous indices, Bias(dHH) � −0.0832. And finally,
although with a more irregular pattern, dCox, dProbit,
and dbis indices achieved the best performance, with
the smallest values of bias [average bias: Bias(dCox)
� −0.0418, Bias(dProbit) � −0.0352, and Bias(dbis)
� −0.0127].

Discussion

The purpose of this article was to examine the per-
formance of different effect-size indices that quantify
the results of a 2 × 2 table in the d metric. These
indices are very useful in meta-analysis, in particular
when the meta-analyst finds that studies contain a
mixture of continuous and dichotomized dependent
variables. In this article we have carried out a Monte

Table 14
Bias of the Effect-Size Indices for � = 0.2 and � = 0.8 Under Nonnormal Distributions

Skew Kurtosis d dp d� dasin dHH dCos dProbit dbis

� � 0.2; Yc � .1

0 0 .0006 −.0329 −.0358 −.0362 −.0159 .0024 .0075 .0109
0.5 0 −.0031 −.0431 −.0458 −.0460 −.0266 −.0094 −.0048 −.0019
0.75 0 −.0053 −.0612 −.0635 −.0637 −.0454 −.0301 −.0265 −.0239
1.75 3.75 .0025 −.0610 −.0633 −.0532 −.0399 −.0240 −.0226 −.0206

� � 0.5; Yc � .25

0 0 .0029 −.0791 −.0862 −.0922 −.0387 .0071 .0184 .0386
0.5 0 −.0016 −.1052 −.1119 −.1167 −.0655 −.0224 −.0121 .0049
0.75 0 .0029 −.1388 −.1448 −.1487 −.0999 −.0602 −.0516 −.0372
1.75 3.75 .0107 −.1434 −.1494 −.1519 −.0913 −.0507 −.0479 −.0356

� � 0.8; Yc � .4

0 0 −.0026 −.1236 −.1349 −.1588 −.0661 .0068 .0206 .0893
0.5 0 −.0003 −.1570 −.1679 −.1885 −.0998 −.0303 −.0172 .0427
0.75 0 −.0007 −.2121 −.2220 −.2374 −.1547 −.0906 −.0791 −.0329
1.75 3.75 .0207 −.2039 −.2139 −.2278 −.1239 −.0584 −.0551 −.0098

Table 13
Empirical (and Theoretical) Sampling Variances of the Effect-Size Indices for � = 0.8
and Yc = .7

Yc N nE nC d dp d� dasin dHH dCox dProbit dbis

.7 48 24 24 .0903 .1298 .1289 .1159 .1451 .1746 .1644 .2762
(.0908) (.0892) (.1099) (.0833) (.1335) (.1612) (.1521) (.3024)

.7 48 32 16 .1022 .1291 .1291 .1286 .1785 .2191 .1973 .3139
(.1015) (.0993) (.1185) (.0938) (.1705) (.2059) (.1831) (.2564)

.7 60 30 30 .0755 .1071 .1072 .0982 .1155 .1380 .1380 .2131
(.0726) (.0711) (.0866) (.0667) (.1045) (.1262) (.1204) (.2182)

.7 60 40 20 .0811 .1106 .1114 .1090 .1420 .1712 .1556 .1678
(.0810) (.0791) (.0931) (.0750) (.1305) (.1576) (.1432) (.1938)

.7 60 48 12 .1128 .1340 .1347 .1544 .2059 .2526 .2234 .1802
(.1104) (.1083) (.1221) (.1042) (.2074) (.2504) (.2137) (.2282)

.7 100 50 50 .0432 .0703 .0712 .0688 .0653 .0750 .0732 .1109
(.0434) (.0424) (.0506) (.0400) (.0601) (.0726) (.0708) (.1092)

.7 100 66 34 .0474 .0751 .0762) .0741 .0778 .0906 .0854 .0942
(.0480) (.0468) (.0544) (.0446) (.0721) (.0870) (.0821) (.1075)

.7 100 80 20 .0668 .0916 .0927 .0955 .1265 .1532 .1361 .1072
(.0660) (.0648) (.0720) (.0625) (.1155) (.1394) (.1235) (.1314)
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Carlo simulation to examine the bias, the empirical
variance, and the adjustment of the formulas for esti-
mating the sampling variance of seven different ef-
fect-size indices that can be obtained from a 2 × 2
table.

Two of these indices assume normal distributions
(dProbit and dbis), two others are based on logistic dis-
tributions (dCox and dHH), one applies the arcsine
transformation (dasin), and the remaining two (dp and
d�) apply the standardized-mean-difference formula
without taking into account the dichotomization. We
assumed normal and nonnormal distributions in the
simulation. Under normal distributions, dProbit and dbis

indices have an advantage. Including a few conditions
with nonnormal distributions helped us to tentatively
explore the robustness of these effect indices.

The best effect-size index should be the least biased
and have a formula derived from statistical theory to
properly estimate the sampling variance of the index.
Under the normal-distribution assumption, our results
show that of the seven indices compared, dCox is prac-
tically unbiased as an estimator of the population stan-
dardized mean difference �, showing estimates very
close to those of d index. Further, its good perfor-
mance was not altered by the manipulated factors in
the simulation. As expected, the sampling variances
of the indices that take into account the effect of di-
chotomizing the outcome (dCox, dProbit, dHH, and dbis)
were larger than that of d, because dichotomizing
variables has a cost in terms of accuracy. Although
very close to dCox, the dProbit index slightly overesti-
mated the parameter �, its variance also being very
similar to that of dCox. In any case, the performance of
both indices, dCox and dProbit, is very similar for prac-
tical purposes.

The dbis index presents a good performance with a
low or medium magnitude in the parametric effect
size but remarkably overestimates population stan-
dardized mean differences of a large magnitude. Fur-
ther, under these conditions the formula for estimating
the sample variance of dbis (Equation 24) also over-
estimates the empirical variance. Therefore, dbis

should be used only when the meta-analyst can safely
assume that the population effect sizes are of a small
or medium magnitude.

The dHH index slightly underestimated the popula-
tion effect size as expected, although its sampling
variance (Equation 17) performed well. The underes-
timation occurred because the dHH index rescales the
log odds ratio by dividing it by 1.81, which is the
standard deviation of the logistic distribution. On the

other hand, dCox rescales the log odds ratio by divid-
ing it by 1.65, which produces estimates closer to the
normal distribution. As a consequence, if the meta-
analyst can assume normality, dCox and dProbit are
preferable to the other indices examined here.

The dp, d�, and dasin indices had the poorest per-
formance, systematically underestimating the popula-
tion effect size, and their formulas for computing the
sampling variances (Equations 9, 12, and 14, respec-
tively) also slightly underestimated the empirical vari-
ances. However, the sampling variances of these three
indices were clearly lower than those of the dCox,
dProbit, dHH, and dbis indices. This is because the latter
indices correct the artifact of dichotomizing continu-
ous outcomes, introducing a multiplier constant that
increases the sampling variance of the estimator,
whereas the dp, d�, and dasin indices do not correct the
negative bias due to dichotomization. As a conse-
quence, use of these indices is ill-advised in all con-
ditions because of their systematic negative bias. In
summary, under the normal-distribution assumption,
dCox and dProbit offer the best results and would be the
indices of choice when the meta-analyst can reason-
ably assume such a distribution.

Although the performance of the indices under non-
normal distributions was beyond the scope of this
article, we added in our simulation a few conditions in
which the degree of skewness was manipulated. Tak-
ing into account that the manipulated conditions were
not representative of the universe of possible nonnor-
mal distributions, we found that as the degree of
skewness increased, the negative bias of the dp, d�,
dasin, and dHH indices also increased. On the contrary,
the positive bias of the dCox, dProbit, and dbis indices
decreased and then changed to a negative bias greater
as skewness increased. Comparing the performance of
the indices, we found that dbis, dProbit, and dCox indices
showed the lowest bias. Next, the dHH index showed
a systematic negative bias of a larger magnitude, and
finally, the dp, d�, and dasin indices continued showing
the worst performance, with a systematic negative
bias, the same as under normal distributions.

A limitation for generalizing the results of our
simulation study was to assume normal distributions
in most of conditions. However, primary studies in
social and behavioral sciences routinely apply para-
metric statistical tests that imply normality. Therefore,
the purpose of our article was to offer initial empirical
evidence of the performance of several effect-size in-
dices under the most usually assumed conditions. Fu-
ture research is needed to examine the performance of
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the effect-size indices under other distributions, where
the index of choice might be different than dCox or
dProbit. For example, it is important to know the per-
formance of these indices under very skewed and/or
heteroskedastic distributions and extreme success (or
failure) proportions that can appear in real data.2

With nonnormal distributions, the standardized
mean difference probably will not be the best popu-
lation effect-size index to reveal the effect magnitude
between two populations and, as a consequence, the
effect indices tested here would not work well either.
In these cases it should be more advisable to apply
other effect indices, such as the nonparametric effect
sizes proposed by Kraemer and Andrews (1982) and
Hedges and Olkin (1985). One problem is that these
indices require the individual data for the two
samples, and this information is rarely reported in the
studies. Therefore, the meta-analyst will face serious
limitations when applying these indices.

In any case, the meta-analyst should include a mod-
erator variable for testing whether there are differ-
ences between the d indices obtained from the studies
with continuous outcomes and the ones with dichoto-
mized outcomes (Lipsey & Wilson, 2001). If there are
no differences between the two d metrics, it should be
advisable to maintain all of the studies in a same
meta-analysis, but if there are differences between
them, a better solution could be not mixing studies
with continuous and dichotomized outcomes but do-
ing two separate meta-analyses, one for the studies
with outcomes measured continuously (e.g., using d
indices) and another one for the studies with dichoto-
mized outcomes using some of the effect-size indices
presented here, or also odds ratios, risk ratios, or risk
differences.

It is important to note that the focus of our article
was how to obtain an effect-size index in the d metric
from a single study when the outcome has been di-
chotomized, to integrate it in a meta-analysis in which
some of the studies reported their results continuously
and others reported them dichotomized. A different,
but related, problem occurs when the meta-analyst
finds studies with continuous outcomes and studies
with true dichotomies. In this case there are two dif-
ferent sets of parameters: the population means (and
standard deviations) for the continuous outcomes and
the population proportions for the dichotomous out-
comes. If the meta-analyst wants to mix all of the
studies in the same meta-analysis, the effect-size in-
dices treated here for dichotomized outcomes could
be tentatively used on the true dichotomies, with the

caution of including a moderator variable for testing
possible differences between the two d metrics.

In summary, although more research is needed to
know the performance of these effect indices under
other conditions and distribution assumptions, our re-
sults can help, on the one hand, to select the effect-
size index in future meta-analyses that include di-
chotomous and/or dichotomized variables and, on the
other hand, to assess possible underestimations of the
population effect size in past meta-analyses that have
used such effect-size indices as dp, dasin, d�, or �.

2 Extreme proportions would happen when the cutpoint is
far from both the experimental and control means, �E and
�C. In our simulations we have found no effect of the cut-
point on the bias and sampling variance of the effect-size
indices. However, our simulations only included cutpoints
placed between the two means, giving rise to not very ex-
treme proportions. So, to explore the possible influence of
the cutpoint on the bias of the effect-size indices, we have
carried out additional simulations moving the cutpoint to
extreme positions. In particular, assuming normality, nE �
nC � 30, and � � 0.5 (�E 0.5, �C � 0, and � � 1), we
have examined the bias of the dCox, dProbit, and dHH indices,
fixing the cutpoint in such extreme values as Yc � 1.3, 1.4,
1.6, 1.8, 2.0, and 2.1. The results showed a negative rela-
tionship between the cutpoint and the bias of the estimators,
changing from an overestimation to an underestimation of
the parametric effect size, � [Bias(dCox) � 0.116, 0.136,
0.125, 0.106, 0.039, and −0.003; Bias(dProbit) � 0.036,
0.039, 0.005, −0.029, −0.094, and −0.0131; Bias(dHH) �
0.061, 0.078, 0.069, 0.052, −0.010, and −0.048, respec-
tively]. The highest bias happened for Yc � 1.4, and it was
of 27.2%, 7.8%, and 15.6% for the dCox, dProbit, and dHH

indices, respectively. For practical purposes, we have found
a good performance for the three effect indices even when
the cutpoint is so extreme that it could give rise to very
small cell frequencies (for example, with O1E � 1 and O1C

� 0). So, although more research is needed to examine the
robustness of these effect-size indices, our results show that,
in general, they are a good solution for translating into the
d metric the results of studies with dichotomized outcomes.
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